
992 DCUPIETATI N SOFTIMIE mINTENCE EVNIVNM 1
TECNICR. SOLUION INC NESILLA PO Ill

L 0LNIS ET AL. 29 IPA 87 MRO-22935. 1-EL-S
WiELNSS1FlED DfG2S-SS-C-4S2 F/O 1215 AL

lUI

lilt I.05 : II 11n115
L 36

11111 111134 12.0

11111_L25 1.4~BI6

MICROCOPY Rt! ,IU tU ION 1ISi (IARI

* I . ,I , i 1 l l i _ w ! 1 1 I I . ! . I

1a1

NVh*t " Al

%

PM ~ /-w owW- y' h5-W.I-.N P..-,, -" "-'2

0)o.0

0o C EILE COPK
LO)

I Documentation In A
Software Maintenance

Environment

DTIC
OCT 2 81987

Approvod for nu-'
Distuh, ltionun.it

TENN JML 8EILUIJE:I0,Ji.

SALES &, TRAINING TECHNICAL CENTER

465 N RESLER, SUI7E A P 0 BOX 11418

I-

ELASOTXAS7992T E P , NM 8

(915)581 1 19 (5 51"52 .215

Documentation In A
Software Maintenance

Environment

L. D. Landis
A. J. Fine

P. M. Hyland
W. L. Hembree

S-A. L. Gilbert
-DTIC

i ELECTE
,:;" 0 OCT 2 8 1987u

V Technical Solutions, Inc.
S.PO Box 1148

Mesilla Park, NM 88047 D
(505)-524-2154

08/04/87

Approvod f',r p' .

It,

I.-

I".

- J 7. . - . - - **.-W,? W~lI1%-,".rv = -WK

Jncltassified /
SECURITY CLASSIFICATION OF THIS PAGE (0lhen Def Entered) __.

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

..,s, , S 3 ./ - - N/ A N/A
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREDTnterim Technical

Documentation in a Software Maintenance 1nAugi8 th31Jl
EnvirnmentI Aug 85 thru 31 July 87I, ~Envi ronrrent• " 6. PERFORMING ORG. REPORT NUMBER

1,, 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(*)7 TO P.M. Hyland

L.D. Landis W.L. Hembree
A.J. Fine A.L. Gilbert DAAG29-85-C-0026

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

"- Technical Solutions, Inc. AREA&WORKUNITNUMBERS
P.O. Box 1148

%I' Mesilla Park, NM 88047 N/A
III. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

28 Aug 87
13. NUMBER OF PAGES

". . " 9 0
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of thie report)

Unclassified
ISa. DECL ASSI FICATION/DOWN GRADING

* SCHEDULE

16. DISTRIBUTION STATEMENT (of thile Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It different from Report)

,%

N/A

I. SUPPLEMENTARY NOTES

The view, opinion, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if neceesary end Identify by block number)X.%

computer languages, compilers, formal language theory, documentation

20. AIRSTlACT (Coatffue ort reverse eit If rnceeary and Identify by block number)

Software has a limited lifetime of usefulness, because as existing
.i ., software ages support becomes more difficult. Major factors in determining

when to replace rather than maintain software are the cost of and to the
time required to train new personnel to provide maintenance support. A

*: 4" primary source of information in training new personnel, making modification
or repair easier, is accurate documentation.

DD I FOR 1473 EDITION OF I NOV 65 IS OBSOLETE,.'. U n c la s s if ie d
SECURITY CLASSIFICATION OF THIS PAGE (en Doe Entered)

% %

4- ,.-. ..- ,. ...,. ...-

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(1Pu, Data E ntered)

20.

By providing automatic techniques to generate documentation of existing ,-

software, the life-cycle of software may be extended through accurate
information about the current state of the software.

The objective of this effort was to explore and select methods of documentation
that automatically extract and display program logic from source code,
thereby extending the life-cycle of software. The domain of problems our
research examined involved looking into the various weaknesses and
vulnerabilities of software and documentation that ages.

o

Unclassified
SECURITY CLASSIFICATION OF THIS PAI E'W',ee D nfv E fered)

% *

_ a _ _ . . ,

Table of Contents

Section Page

Abstract 1

Introduction 2
Overview of the Problem 2
Our Motives 4

Approach 6
Our Research 6
Project Scope 7

' Documentation Techniques 9
Existing Documentation Techniques Evaluation 9
Software Maintenance Evaluation Results 10
Tools Initially Selected 11

Applications Anticipated 12

... Documentation Language Requirements -- 14
liri~lmentaiDn 1

Implementation Strategy 16
. Documentation Language 16

Documentation Language Compiler 16
Description of lex 17
Description of yacc 18

Issues of Completeness - ''- 22
Analysis of Languages i 22
Data Structures J 23
Operand Structure 24
Block Structure 27
Block Table Structures 29
Symbol Table Connectivity 31

DL Representation Example 33o,:!....

Results L 40

1I

Section Page

Appendix A - Review of Documentation Techniques A-1

Appendix B - Operating System Level Organization B-1

Appendix C - Symbol Table C-1

p -. ; Appendix D - Documentation Language Flowgraphs D-1

. Appendix E - Compiler Data Structures E-1

Appendix F - Suggestions for Further Reading F-i

p

,%

*****%*?~ *-*.*'* *- ,

Documentation In A Software
Maintenance Environment

Abstract

Software has a limited lifetime of usefulness, because as existing software ages
*: support becomes more difficult. Major factors in determining when to replace

rather than maintain software are the cost of and to the time required to train new
personnel to provide maintenance support. A primary source of information in
training new personnel, making modification or repair easier, is accurate
documentation.

. ,By providing automatic techniques to generate documentation of existing software,
the life-cycle of software may be extended through accurate information about the

" ""current state of the software.

* The objective of this effort was to explore and select methods of documentation that
Nautomatically extract and display program logic from source code, thereby

extending the life-cycle of software. The domain of problems our research
. examined involved looking into the various weaknesses and vulnerabilities of

software and documentation that ages.

Keywords

Computer Languages, Compilers, Formal Language Theory, Documentation

-I-
i-p "S

,4

I.

Automatic Documentation Generation

Introduction

There are two distinct classes of documentation that need to be provided with a
software package: user level documentation and system/internal documentation.

User level documentation defines the scope of the problem solved, and how to use
the package. Typically this documentation is done to the degree that the user
community requires, and is not a substantial problem. Also, functional or user level
documentation does not change significantly over time, since users do not want to
relearn how to use their software; i.e, upward compatibility usually exists. Large
functional changes generally result in new user documentation, which then is not
changed significantly until another major revision.

On the other hand, system or internal documentation can become a problem because
it details how the package solves the problem. These internal details may change
significantly, without changing what the user sees or how the system is used.

This research concentrates on the problem of documenting the internal mechanisms
of a package (from the production source code) and representing this detail to the
maintenance programmer for training and for verification of functional processes
as changes are made to the software. Documentation, as used in this report, is to be
understood as that documentation that is of an internal or systems nature rather than
user level documentation.

Overview of the Problem

Internal documentation has historically had a low priority in a project, usually not
by design, but rather due to lack of time or other considerations. If other phases of
a project were poorly estimated, or the emphasis was to get it out the door before
the competition makes it obsolete, the internal documentation is typically the effort
that suffers.

2I

2 ;
I

-° t

~Introduction

Even if documentation was done when the project was initially completed, over
time it inadequately defines the working or production system. People seldom

:Z i"accept responsibility for updating documentation, hence documentation seldom
conforms to new changes. Internal documentation falls into disuse if maintainers
discover that they have been misled by inaccuracies or, worse, by not recognizing

-. the inaccuracies they place more programming flaws in the system.

, ,."- Maintenance is more difficult as systems become larger. Large systems can become
too complex for one person to understand and team maintenance further
complicates the problem. Significant amounts of old software exist, much of it
written before structured programming, without the benefit of modern software
engineering techniques. This software often suffers from such maladies as
unstructured code, machine hardware dependencies, operating system
dependencies, and large amounts of suspected dead code. Performance and
maintenance efforts on these large systems are barely manageable, and tend to
become less manageable over time. Several generations of changes can even
transform what was a well defined structure into a confusing and error-filled
patchwork.

These problems may be unavoidable, and there are situations that make the
problems much more difficult to solve, e.g., external factors involving system
organization or available personnel. Size and system complexity can aggravate
software problems. Sensitivity of software to small modifications rapidly increases
with software size since large software systems have more interfaces and

..... exceptions, leading to effects that one person might not completely understand.
Effects begin to look organic, in that a software system can respond to a small
correction in one area with large compensations in other areas.

14. A further contribution to maintenance problems is that software developers prefer
to develop new software rather than maintain old software. Development
assignments are often reserved for those who have paid their dues and many
creative, highly skilled programmers have prejudices against maintenance
assignments.

3

a: -.

N > ..

Automatic Documentation Generation

Generally, developers of new software are reluctant to maintain software for very
long after the product has been accepted by the end user. For these reasons, original
developers of the system are usually unavailable because they have moved on to
something new. The result is that maintenance programming is where most
programmers begin their careers. Less experienced programmers are more likely
to introduce program flaws, worsening the overall poor condition of an aging
application.

Even if all these problems and vulnerabilities are avoidable, all software comes to
one of three ends:

0 Modified for new or changed tasks

* Rewritten when modification is no longer considered cost effective

• Destroyed when no longer needed

Modifying programs is preferable to deleting or rewriting them as most of the
application need has been (or is perceived to have been) solved. The problem is: 4
how can the software life-cycle be extended so modification remains cost effective?

Our Motives

This company has interests in various areas closely related to software
development:

0 Large commercial applications

* Documentation and diagnosis of large applications

* User libraries

• Languages; development, implementation, and compiler support

" Integration of standard routines into current applications

• Aids for data usage evaluation

4

* Approach

• Theory development for translators that convert algorithms to natural
language descriptions

- Combat simulation models

In addition to training our programming personnel in the basic modeling, graphics
and user library software, we incorporate libraries written by others into existing

S.. software. As an example of the need for maintainance documentation, a portion of
"- our business currently use combat simulation models originally developed in

FORTRAN by several different programmers over a period of several years. The
maintainance problem is compounded when the COMBIC and EOSAEL

S°atmospheric obscurants model from the Atmospheric Sciences Laboratory (ASL)
are integrated with several weapons effectiveness evaluation models. Knowing how

' these routines work, without having to extensively read the source code, helps in
reducing the training time.

Users of models and other software systems may not be programmers. In many
cases it is useful to these users if they can examine the methods being used in the

S program to validate the results given by the model. Provided documentation of the
UN program logic, in the form of diagrams and charts, these personnel can more

effectively participate in the design and implementation of the system they are
*. using.

*' 5

, */ *

Automatic Documentation Generation

Approach

Our approach to automatically generating maintenance related documentation
consists of two aspects: selection of useful documentation methods for the
maintenance environment; and definition of a documentation language with an
initial implementation of a compiler for the documentation language and display
processors.

Our objective was to build a working documentation generator using existing
compiler technology and software engineering methods.

Our Research

This company was awarded a contract [1] to do basic research in automatic
documentation generation on existing maintenance intensive, software
environments.

The goal of our research is to investigate methods aiding software life-cycle
extension. Modification remains a cost effective alternative so long as it involves
less effort and expense than rewriting the software system. Maintainers can make
repairs in a more cost effective manner when provided adequate documentation,
and the software life-cycle may be extended by rejuvenating the software.

Also, techniques for extending the life of the software can be developed by
redocumenting software as it ages; delaying the time when modifications are no
longer cost effective. These techniques then become tools, improving maintenance
efficiency, allowing software to age more gracefully.

Our investigation plan has been to:

Develop a documentation language, DL, that supports existing third
generation languages (i.e. FORTRAN, Pascal and C) and the newer third
generation languages such as Ada

I] Army Research Office Contract: DAAG29-85C-0026

[2]Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office)

6

0-°

..

• Investigate existing techniques of documentation and determine which
techniques are most suitable to the maintenance process

' Develop new techniques and algorithms for automatic documentation
generation

Project Scope

Research emphasis is on high level, sequential, algorithmic languages. Examples of
these are FORTRAN, C, Pascal, and Ada. Assembly languages were not considered
since a general solution across systems is impractical [3].

Goal directed programming languages, such as Prolog and Icon, are not being
considered as their use is limited. Parallel programming problems are also not
being considered since little software yet exists. These and other fourth generation
languages (4GL's) are too new, and the experience with maintenance of large
software systems in 4GL's is too limited to evaluate documentation requirements
for this class of languages. The radically different nature of 4GL's (from the third
generation languages like FORTRAN and COBOL) supports the suspicion that
substantially different maintenance documentation is required from that needed in

UN the third generation language environment.

. Evaluation of existing documentation techniques was the initial task, since many
forms of documentation exist. Investigation revealed that while many helpful
techniques exist for the software development phase, there are not enough useful
documentation techniques for the maintenance phase.

Next, a DL was developed that was capable of representing a wide variety of
programming languages, Since the majority of in-house software is written in
FORTRAN and C, emphasis on handling those languages has been paramount, but
the approach has been left open-ended to allow for expansion of the automatic
documentation generation system to include other languages.

[3] Note: large degrees of machine/implementation dependency in higher
level languages are possible. FORTRAN serves as a case in point, but this
does not usually apply.

." 7
|p

I
°
.

KA -A- - - - - i ..

3-

Automatic Documentation Generation

The initial focus has been on development of automatic documentation tools for
FORTRAN. Since our sponsors have large holdings of software written in
FORTRAN, and FORTRAN is still widely accepted for standard use, specifically
with currently developed software. There also exists a sufficient base of aging,
problem software in this language. A compiler for DL was developed to the point
that all constructions in FORTRAN and C were handled. .

Since our tools are to eventually operate on software written in other languages §
(Ada, C, COBOL, Pascal), the implementation strategy was necessarily open ended
allowing for incorporation of structured programming environments.

N'.m

~1

8
74

,! Documentation Techniques

Documentation Techniques

Documentation Techniques

Large amounts of maintenance phase software were examined. Languages
represented in the sample were: FORTRAN, DIBOL, C, and BASIC. All
applications examined have existed for several years, and are constantly used and
updated.

Maintenance programmers were interviewed to help clarify the types of problems
occurring in the real-world maintenance environment. Also consulted were
members of our staff who work on FORTRAN programs. These programmers
range from entry level to research associates, and are in our informal maintenance
training program. Many of our new hires work on the large combat simulation
models, which are written in FORTRAN. There, they deal immediately with
problems in system complexity, system testing, and system modification.

Several standard documentation techniques were examined with a view to
usefulness in a maintenance environment. In general, it was found that most
techniques are not appropriate for the maintenance portion of the software life-
cycle. The primary reason for this is that there is a significant amount of detail
present in the actual production code.

Elimination of detail requires too much in the way of understanding the effect of the
code to avoid such things as the Turing Halting Problem. Mechanisms must be

Ideveloped to allow a human to manually eliminate the low level detail, thus making
possible documentation of an overview nature. The decision to document code at
the low level was made.

Existing Documentation Techniques Evaluation

The following published documentation techniques were evaluated from the
k; perspective of providing documentation in the maintenance environment:

Pretty Printing
p.

% .. • Wamier-Orr Diagrams
q.

r, .

; 9

Automatic Documentation Generation

* Michael Jackson Diagrams

0 Flowcharts

• Pseudocode / Structured English

• Nassi-Shneiderman Charts

* Action Diagrams

a HOS Charts -.

Evaluations of each of these documentation techniques are given in Appendix A.

Software Maintenance Evaluation Results

The evaluation criteria used to evaluate suitability of documentation methods for
the maintenance environment were:

• Overview of the system

• Program architecture display

* Detailed program logic

" File and database structure

These methods have properties generally suitable by all our criteria:

" Warnier-Orr diagrams can graph program, system and data structure in
hierarchical format ..

" Action diagrams are designed to show all details of an organization at all
levels .*

* HOS charts can describe mathematically rigorous tasks regardless of task
size

10

, - %. € • d € .." • " . ." °= " " ." " ." ° '. • ./ *

Documentation Techniques

These methods are considered suitable by the criterion of detailed program logic.
They satisfy no other criteria.

• Nassi-Shneiderman charts

Flowcharts

Pseudocode / Structured English

' .Each is specialized for describing procedures, with different aspects of flexibility
and elegance. However, they all have considerable problems attempting to describe
anything large scale. Hence they are best only for describing the detailed program
logic of a single routine.

Tools Initially Selected

Research is being focused on a few tools for the initial development. Although not a
documentation technique, many requests were made for good cross references of

.the code. The decision was made to include a cross-reference listing capability.
These conclusions were reached after research was completed on available tools,
and the initial tools selected were:

• -. Cross reference generation

- Nassi-Shneiderman charts for documenting detailed program logic

Action diagrams for documentation and maintenance of overall

systems, programming, and data structures

1

%I

. . . -. - .

Automatic Documentation Generation

PApplications Anticipated

Good documentation should provide an abstraction of the program at every level of
the program. These abstractions provide information useful to programmers and
analysts alike, depending on the level of detail desired and the code to be examined.
One way to envision this is to contemplate beginning with the individual blocks of
code and documenting, or abstracting, them. Then move up one level and abstract
all code blocks below. Continue moving up a level at a time, the documentation for
the current level being the abstraction of everything at the next lower level in the
program. When finished, there exists documentation for the entire program, and
an abstraction of the program, level by level.

These abstractions are of use to programmers, checking the individual operations
for errors, and to analysts, looking for correctness of the implementation of the
program design, assuming there was a design in the first place.

Of the tools selected for initial development, action diagrams and Nassi-
Shneiderman charts appear appropriate for abstracting various levels of program.
Action diagrams can provide a semi-pictorial representation of the documentation
tree structure. Nassi-Shneiderman charts provide a block-structured representation
of program structure and may not be appropriate for more than selected blocks of
code at a time.

Applications anticipated as useful extractions of relevant information from the
compiled DL include:

Cross reference generation

A list of all identifiers with similar names, to check for typing
errors in languages like Fortran that allow variable usage without .a prior declaration.....

• A list of assignments to variables declared to be of a different type,
in languages like C with weak type checking.

* A list of what subroutines are called by a selected piece of code,
useful for tracking the side effects of a given change.

12

o%" - "

,..% ,, .". , , ,. :', .9.,.: ," .;.,..; .",:,", - . : ; . " ,,",/",', > ",".';'> ," " ."". ., " ,

k.-4

Applications Anticipated

Action diagrams

* An interactive system that would allow the user to supply an
abstraction for a given piece of code, in order to see less detail
and more the overall purpose of the code.

" A documentation "tree", showing the various levels within the
program either execution order or lexical order.

• An abstraction of a piece of code, consisting of the inputs, outputs,
" .- and all data modified within that piece of code.

.- Nassi-Shneiderman charts

.. Block-structure diagrams that provide a pictorial representation
of a block of code. This is useful for programmers new to the
language used, as well as programmers new to a given piece of
software.

. An abstraction of a piece of code, consisting of the inputs, outputs,
and all data modified within that piece of code.

Also useful would be a pictorial representation of the various data structures used in
the program. This is especially important in languages that employ data-hiding,
where there may be several levels of data abstraction to weave through before

S.i grasping the actual structure involved.

13

,-..; ,_.

Automatic Documentation Generation

Documentation Language Requirements

DL provides notation capable of representing programs written in FORTRAN,
Pascal, C and eventually, Ada.

These languages (especially C, Ada and Pascal) support structured programming
techniques and are present on the current generation of systems. Additionally, they
are similar enough to easily combine into a language that can represent them all.

DL was required to represent programming constructions of several languages to
include FORTRAN, Pascal, C and in the future, Ada. Specific needs were: block
structure (localized declarations, scope of name bindings), standard data types, user
defined data types, aliasing, operator overloading, nested procedures/functions, and
encapsulation (packages).

Block Structure
Each block defines an environment and definitions that are local to that
block, are bound to the block and inaccessible outside of the block. This
allows data hiding. Blocks may be named (as in Ada) or unnamed. -

Standard Types
Provisions of basic data types and data structuring allows the source
language to be translated into DL. Although based on C, DL is different
from C in that several extensions were necessary. Basic data types include
enumerations and scalar data (including character, signed/unsigned short
integer, signed/unsigned long integer, float, double, complex, and dcuble
complex).

User Defined Types
Users may define structured types using structures (Pascal/Ada records). A
special class of structure, the union, may be used to map several
declarations to the same space (Pascal/Ada variant records).

Aliasing
A typedef facility allows the user to create new names for new or existing
types. FORTRAN equivalences, another form of aliasing, is handled by
defining unions, which provide mapping several variable names to the same
storage locations.

14
. . -

- Documentation Language Requirements

- S

Operator Overloading
Control over operator overloading is given to accommodate differences in
type promotion/demotion rules for different languages. The most common
overloading is for arithmetic operators like "+", "-", "*" and "/". In these
cases, the promotion of characters to short integers, short integers to long
integers, long to float, float to double, and double to complex are understood

* °so that expression result types are known. Consideration has been given to
S.- allowing arbitrary user specified operators so that DL can accommodate

fully overloaded and user defined evaluation rules.

Function and Procedure Overloading
Overloading of function and procedure names is required for Ada but not
for FORTRAN, so work in allowing this form of overloading has been
deferred.

Nested Procedures and Functions
Languages like Pascal and Ada allow nesting of procedures and functions.
This allows for controlling the scope (i.e. accessibility) to functions.

Encapsulation
Creation of modules (Ada packages) was considered, but is not implemented.
This will allow the developer of code to define interfaces to functions
without giving direct access to the internal workings of the functions. Access
to the exported functions, procedures and variables is controlled by the
module using struct-like construction, where the struct is the name of the
package, and the members of the struct are the functions, procedures and
variables of the module interface.

15
o-

Automatic Documentation Generation

Implementation Strategy
.1

Developing an open ended, extensible approach required designing a general ..-

purpose documentation language, named DL, and developing a compiler for it.
Maintenance tool output generators and translators from specific programming
languages can then be developed, which use the information derived by the
compiler. The following sections present a conceptual overview of the
parser/documenter system. Appendix B presents the system-level implementation
of the system while Appendix C provides a detailed look at the internal symbol table
structures used in the parser/documenter.

Documentation Language

The initial definition of DL was chosen to be the X3J1 1 standard of the C
programming language. C provides an abstract representation which combines data
structures at their most primitive level, operators for these primitive structures,
and function/subroutine calls. Also, C has sufficient flexibility to represent itself
and higher level programming languages. C compilers are established on many
computers, and have nearly no special requirements for running on a specific
machine.

The new standard of C, developed by the ANSI X3Jl1 committee, contains
revisions addressing problems left unresolved by the older standard, as defined by
Kernighan and Ritchie. Translation programs convert software written in the
different programming languages and express them in DL. DL syntax is given in
Appendix D as a series of flowgraphs.

Documentation La guage Compiler

The DL compiler transforms DL source code into a symbol table specifically
developed to represent the complete set of semantics available in DL. This
transformation is reversible, since the complete set of semantics are preserved in
the transformation.

16

,. -. -. .. " .' ...-..- . , . , -.-.. . -.. '- .'.," .. '.'..',j-.'-,'...-.. . ".'. ". . -.. ". '..'...-. - _- ".- • • "-.'

Implementation Strategy

Preprocessors for conversion of standard languages such as FORTRAN and Ada to
DL are planned which allow for support of large bodies of software currently in
maintenance.

Development is being done under 4.2bsd Unix running on a VAX 11/750. The
Unix environment provides a rich set of utilities that aid in the development of
compilers and preprocessors. Unix utilities employed were lex (for lexical
analysis), and yacc (for syntax analysis).

Regular expressions, representing the tokens of the goal language, are used by lex
to represent (i.e., tokenize) a language's lexical characteristics. Context-free
expressions representing a language's syntax are used by yacc to generate an
LALR(1) parser (look ahead one token left to right). Both representations use
action code to perform semantic interpretations. The term action code refers to
the portions of the lex or yacc source designated to perform syntax directed
translation.

Description of lex

The input to lex consists of a table of regular expressions and corresponding
action code, which lex translates into a C source program. The resulting source
program is a software implementation of a deterministic finite-state automaton
(DFSA) that recognizes the regular expressions from the input stream, and executes
the program fragment to operate on the recognized text.

The DFSA is interpreted, rather than compiled, in order to save space. The
automaton interpreter directs the control flow, and the user is allowed to insert
additional declarations and statements, or to use external subroutines.

Ambiguous specifications are accepted, in which case lex recognizes the longest
possible match. If several matches are of equal length, then the first match is used.
User supplied action code is then executed and may further refine or reject the
match, or do other processing needed by the application. Although it is a very
useful tool, lex is not a complete language, but rather a recognizer generator that

creates a subroutine that processes all input, freeing the user from having to write
and rewrite lexical analyzers.

17

t J
nI

-.,*

Automatic Documentation Generation

By design, lex is particularly suited to integrate with the yacc parser generator;

where lex performs the lexical analysis phase, and the parser recognizes syntactic
elements of the language. *1I
Description of yacc

Although it is called a compiler compiler, yacc is a very flexible and general tool
for describing the input expected by a computer program. The yacc user specifies
the structures of the input, together with code to be invoked as each such structure is
recognized. This input is converted by yacc into a subroutine that handles the input
process; frequently, it is convenient and appropriate to have most of the flow of
control in the user's application handled by this subroutine.

The parser subroutine produced by yacc calls the lexical analysis routine,
previously discussed, that returns the next basic input item, called a token. These
tokens are organized according to the input structure rules, called grammar rules;
when one of these rules has been recognized, then user code supplied for this rule,
an action is invoked; actions have the ability to return values and make use of the
values of other actions.

The heart of the input specification is a collection of grammar rules. In our case the j
grammar of the ANSI X3J1 1 C language was expressed using the yacc grammar
rules. When the input being read does not conform to the specifications, syntax
errors are detected as early as is theoretically possible with a left-to-right scan.

While yacc cannot handle all possible specifications, its power compares favorably
with similar systems. Moreover, the constructions which are difficult for yacc to
handle are also frequently difficult for human beings to handle.

Actions that do not terminate a rule are actually handled by yacc by manufacturing
a new nonterminal symbol name, and a new rule matching this name to the empty
string. The interior action is the action triggered off by recognizing this added
rule.

18 18 ;-;0

~ *.*.-•.°

Implementation Strategy

ki
In our application, a data structure representing the parse tree is constructed in
memory, and transformations are applied to it before output is generated. Parse
trees are particularly easy to construct, given efficient routines to build and
maintain the tree structure desired.

The parser produced by yacc consists of a finite state machine with a stack. The
parser is also capable of reading and remembering the next input token (called the
look-ahead token). The current state is always the one on the top of the stack. The
states of the finite state machine are given small integer labels; initially, the machine
is in state 0, the stack contains only state 0, and no look-ahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and
error. A move of the parser is done as follows:

.. Based on its current state, the parser decides whether it needs a look-
- .ahead token to decide what action should be done; if it needs one, and

does not have one, it calls the lex entry function yylex to obtain the next
* .token

Using the current state, and the look-ahead token if needed, the parser
decides on its next action, and carries it out; this may result in states being
pushed onto the stack, or popped off of the stack, and in the look-ahead
token being processed or left alone

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a look-ahead token. The look-ahead token is cleared
as a result of the shift. The reduce action keeps the stack from growing without
bounds. Reduce actions arc appropriate when the parser has seen the right hand side

S.of a grammar rule, and is prepared to announce that it has seen an instance of the
" rule, replacing the right hand side by the left hand side. It may I: necessary to

consult the look-ahead token to decide whether to reduce, but usuiI! . is not; in
,,'.: fact, the default action is often a reduce action.

Reduce actions are associated with individual grammar rules. The reduce action
depends on the left hand symbol, and the number of symbols on the right hand side.
To reduce, first pop off the top n states from the stack (in general, the number of

.. states popped equals the number of symbols on the right side of the rule).

19

If* A-

Automatic Documentation Generation

In effect, these states were the ones put on the stack while recognizing the tokens
which no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what is in effect a shift of the left side. A new state is obtained, pushed onto
the stack, and parsing continues. There are significant differences between the
processing of the left hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the look-ahead token is cleared by a
shift, and is not affected by a goto.

In effect, the reduce action turns back the clock in the parse, popping the states off - "
the stack to go back to the state where the right hand side of the rule was first seen.
The parser then behaves as if it had seen the left side at that time. If the right hand
side of the rule is empty, no states are popped off of the stack: the uncovered state is
in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed before
the stack is adjusted. In addition to the stack holding the states, another stack,
running in parallel with it, holds the values returned from the lexical analyzer and
the actions. When a shift takes place, the external variable value (supplied by the
lexical analyzer) is copied onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done, the external variable is
copied onto the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the look-ahead token is the end marker, and indicates
that the parser has successfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing according to the
specification. The input tokens it has seen, together with the look-ahead token,
cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing.

I

It does this by selecting one of the valid steps wherever it has a choice. A rule
describing which choice to make in a given situation is called a disanibiguating
rule. Two disambiguating rules are invoked by default by yacc:

20

.

Implementation Strategy

In a shift/reduce conflict, the default is to do the shift

- In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence)

The first rule implies that reductions are deferred whenever there is a choice, in
. favor of shifts. The second rule gives the user rather crude control over the

-. " behavior of the parser in this situation, but reduce/reduce conflicts should be
avoided whenever possible.

* (21

5-

.5,5

- °

Automatic Documentation Generation

Issues of Completeness
,d.

In defining Documentation Language (DL) it was necessary to examine all of the
languages that we anticipated encountering. This set of languages included BASIC,
FORTRAN, Pascal, C and Ada. As previously stated, fourth generation and goal
directed evaluation languages were eliminated from connideration (e.g., Prolog and
Icon).

DL must both represent the complete source language and facilitate generation of
documentation. Designing a language such as DL required analysis of both the _:
programming models of the source languages and the syntax of the language needed
to support those models.

Analysis of Languages

Common elements in the languages under consideration include data structures,
routines (functions and procedures) and control of reference scope. Some of the
source languages did not necessarily require supporting all of these concepts. For
example, FORTRAN does not provide the minimal scoping rules (data access
control) provided by C, which is also less than that provided by Ada. In this case,
the most advanced form of data access control, that of Ada, must be used in DL in
order to have a complete representation. Investigation into representations showed
that it was possible to represent BASIC, FORTRAN and C data structures using the
more complex representations implemented in Ada.

Another issue is the semantics of blocks. For languages such as BASIC there are,
typically, no blocks. The bounds of a subroutine in BASIC are from the entry point
referenced in the GOSUB until the RETURN(s). In many interpreted BASIC
implementations, there is no requirement that the RETURN appear lexically
following the entry point. Essentially, a BASIC program is one large, possibly
unstructured block. All data is accessible to all parts of the program logic.

FORTRAN, on the other hand, has a limited repertoire of block capabilities. ""
SUBROUTINE and FUNCTION blocks are distinct "capsules" that have a visible
entry point(s). Data may be put in capsules using COMMON blocks, but access to
data within the COMMON is uncontrolled, allowing unrestricted data conversions.

22
O

.... -. . - -. ' ~~ - -... *-. *--. -.

'

Issues of Completeness

Blocks are "named" in that the routine or COMMON has a name. FORTRAN does
not provide nesting of blocks, so the requirement for FORTRAN is flat, one level
blocks. Languages such as C and Pascal allow nesting of blocks. Although different
in detail, the semantics for C and Pascal are similar. Both allow for definition of
procedures and functions, as with FORTRAN. Pascal allows specification of
procedures and functions within (and local to) procedures and functions. In each of
these local procedures and functions, declaration of local variables may occur.
These variables are private to the declaring routine, and those routines within it
(identifier scoping rules).

Similarly, C allows declarations of variables at the beginning of any block,
including function-internal blocks. These private variables are accessible only to
statements in that block, and generally are created and destroyed on entry to and

:" .exit from the block. To handle these block requirements (both C and Pascal), it was
determined that each block contain all local declarations in that block. The only
difference between a procedure/function and an unnamed block in C is the absence
of a name, since parameters are optional.

Ada allows for a merging of the C and Pascal concepts in that blocks like those in Cmay be named, and have local declarations. Procedures and functions may benested and have local declarations. These named blocks are executed just like

regular blocks (that is control "falls" into the named block), but an extra measure of
name scope control is allowed.

Data Structures

Adequacy of any documentation provided by an automatic documentation generator
is dependent on the level of detail retained from processing the source program. If
the internal intermediate representation of the original source is incomplete, then
the documentation process will create inferior documentation.

To protect against the problem of insufficient detail, hand drawn charts were
created for significant sample code blocks. From these charts, prototype data
structures were created for representing the sample code.

23

............ .- ,--.. .".--------

Automatic Documentation Generation

Incorporated in the initial design was the notion that any structure built by the DL
compiler should be independently verifiable as to the correctness of the internal
linkages. A "tagged memory" scheme was developed such that each element of the
compiled structure described itself (in form) so that it is possible to verify that all
pointers point to objects of the type they are intended to reference. The general
exception to this tagged memory model is that of character strings, in which are --

stored identifier names, descriptions and in-line comments.

A limited set of common structures were developed to minimize the number of
storage managment routines needed. For example, a generic table structure was
implemented so that a table can have a dynamic number of elements, all elements
being of a specific type. In this way a single routine can add an element to any table,
and the table manager is able to verify that the element is of the appropriate type for
that table.

Operand Structure

Each structure is called an operand, and each operand is assigned a unique
operand type. All operands have a common prefix tag field containing the type of
the operand, the block to which the operand is assigned, the tab!e to which the
operand is assigned, and the table entry number at which this operand is assigned. A
detailed definition of all of these stuctures appear in Appendix C. DL currently has
operand types block, code, list, mem, init, quad, ref, symbol, table, type, val, and
expr, used as follows:

OTBLOCK

All code and local definitions to a block are stored in an OTBLOCK
operand. A base block anchoring the parse tree makes the entire
parse tree available to a documentation program.

.2

24,'3

0 '

.". "- "" "- .%- - "-.-" - - ' - - " ' "" -. " ". :• • " ' " " " " " '" " " " " " " " " " '

Issues of Completeness

OT-CODE

Executable statement operations (quadruples) are kept together by
code statement, in code tables. Sequential processing of the
quadruples, in the order of the code results in the replication of the
execution order of the input source.

OTLIST

List operands maintain appropriate association (grouping or
sequence) of operands as they appeared in the input source.

OTMEM

. Members of data aggregates and unions (both of which are type
" ". operands) describe the data to be stored in each field of the aggregate
ii. or union.

OTINIT

* Initializers for data are stored in init operands. The values associated
i U with the init operands are val operands.

OT VAL

Values for init operands appear in val operands. These are used for
static and dynamic initialization of variables.

OT QUAD

".'. Execution operators are stored in quadruples, which have an operator,
lo,. up to three operands that the operator uses, and a resulting type

operand.

25
"1

I

Automatic Documentation Generation

OTREF

References are kept in ref operands. References include such things
as source file, line number, and reference class.

OTSYMBOL

A symbol operand is used to describe variables, function and
procedure descriptors, aggregates, unions and enumerations. In the
cases of aggregates, unions and enumerations, there may be a name
associated with the entry to allow later references. Note that the
seperation of symbol operands into variable, aggregate, union and
enumerator is done by noting which table the symbol appears in.

OTTABLE

A table of operands is a variable array of operands, all of the same
operand type.

OTTYPE

Data type information is captured in the type operand, which has
several variants, depending on the basic type declaration.

OT EXPR

This entry is used to keep track of the current type within expression
evaluation.

2

26

Issues of Completeness

Block Structure

9 The primary structure that describes the source is the block. Each block is given a
unique block identifier number so that the linkage to all elements belonging to that
block can be verified. If the block has a name (function, procedure, or Ada named

-block) the name is also recorded. A prototype function block represents the
interface information of a function whose complete formal definition is supplied
elsewhere in the input source.

When a formal definition of a block has been completed, then the function block is
no longer a prototype. The function block is then LOCKED from further
modification. This allows the DL compiler to diagnose attempts to multiply define
routines.

Formal parameters, if they exist, are recorded in the block so that checks can be
made regarding the appropriateness of a call to the routine. If the block is a
function, the return type of the function is also indicated allowing recognition of
inappropriate assignments or uses of the return result.

The currently defined block types in DL are:

BT BASE

An initial block is allocated prior to any source being processed. Allexternal definitions and outermost level routines appear in the base

.'- ~block. For BASIC, FORTRAN and C, all procedures and functions
are found in this level. For Pascal and Ada, the main procedure and all
external definitions appear in this block.

BTNONE

The block type has not been assigned. During the compile, the initial
type of a block is none. Prior to entering a block into a table, a
block type other than none is assigned to the block, else an error is

diagnosed.

27

Automatic Decumentation Generation

BTDATA

Initialized data specifications are stored in data blocks. This is where
FORTRAN "BLOCK DATA" is stored. FORTRAN "COMMON"
blocks are data blocks that have the name of the COMMON they
represent.

BTSUBR

Nameless procedures are stored in subr blocks. A nameless
procedure contains declarations and code that are stored local to the
subr block, and may contain other blocks. Nameless procedures are
activated by fall-through, and do not return a value.

BTFUNC

Completely defined subprograms are stored in func blocks. A
subprogram is given a name, optional return value type, and optional
formal parameters. A subprogram contains declarations and code that
are stored local to the func block, and may contain other blocks.
Subprograms are activated by invokation. A function is a subprogram
that returns a value, a procedure is a program that does not.

BT_PROTO

The proto block type is used for the definition of a prototype. A
prototype describes an incompletely defined function or procedure. A
prototype does not yet contain any code but does describe the name of
the block, and optionally, the number and types of parameters to the
function or procedure.

0

28 "
0 .

[L . . -,"- -.'. . -.-" , . - - -- .- • . . --- .- - - :,.- -:- -- . -_. ,.

Issues of Completeness

Block Table Structures

Each block has a group of associated tables. Each table has the current number
'< of allocated and activated entries in the table. All entries in the table must be of the

prescribed type that was specified when the table was created. The varieties of
tables include:

TBLAGG

This tabie type holds aggregates of data, such as a C structure or
Pascal /Ada record. An aggregate has at least one member element.
Local struct definitions are stored in the currently active block, when
the definition is encountered. Each member of an aggregate table is
assigned storage following the previous member in the aggregate.

TBLUNION

h. Unions differ from aggregates in that each member in the union

table overlays (is given the same storage offset) the previous union
member.

TBLMEM

* " Mem tables define member fields within the structure of aggregates
or unions.

TBLBLOCK

Blocks that are local to the currently active block are stored in the
block table. These block table entries may be any of the allowed
block types, with the convention that a base block only occurs at the
base of the internal representation. Each entry in the block table is a
recursive data structure of blocks.

29

I.

- -
' € .. - - .- .* e ',.. e .e o- e - " . .. e. '. ' ' .. '.' .- ''. ' '€ ',, 7 '- -'- - -"• - . -'-"-'. ,, e~ - .

"
. ." '- " -,

Automatic Documentation Generation

TBLCODE

All executable statements are represented by code table entries.
Code is itself a linked list of quadruples (quad).

TBLQUAD

Executable instructions are stored in quadruples, which consist of an
operator, up to three operands (2 sources/1 destination, or 3 sources),
and a result type operand.

TBL ENUM -.

Enumeration definitions local to the current block are stored in the
enum table. Each enum has at least one enumerator following in
the enumeration definition from the input source.

•.- p.

TBLENUMERATOR

A single enumerator is assigned an entry in the enumerator table. A
set of enumerators define the range of valid values to which elements
of the enum type can be assigned.

TBL_ TYPE

Local type definitions are stored in the type table. Several pre- 3
defined types are installed in the base block that allow the user to
reference all of the standard supplied types of BASIC, C, FORTRAN,
Pascal and Ada.

30

0)

, -._ , . .--., °.- .:. .- .i -. :. .- °. .: -. .--. -. ,. ..:) ..: °. -. ,- -, " .

.k7 W .07 Wi - -'- -7 0 Ir - 7.- .

Issues of Completeness

... TBLVAR

- !Local variable definitions are stored in the var table, with optionally
specified associated initialization values. All variables are associated
with a type entry, that may be in the current block or any of the
active blocks (determined by lexical scope rules).

TBL_REF

Lexical occurance and symbolic references to all elements are stored
in ref table entries. The ref table in a block indicates the locations
that referenced this currently active block.

d ,"

TBLLABEL

A label table indicates the labels (symbolic addresses) that occur in the
block. These labels are referenced by the unconditional goto
statements in BASIC, C, FORTRAN, Pascal and Ada.

Symbol Table Connectivity

Each block, except for the base block must be owned by another block. In this
' way, internal compiler failures such as attempting to assign ownership of a block

to more than one block are detected. This eliminates what would otherwise appear
"~ as data dependent errors.

." .In the current implementation a set of simple types is known by the compiler. This
set of types includes those necessary for FORTRAN and C. These two languages

a... were chosen because initial development of the compiler was in C, and since we
• .1 have a large body of software written in FORTRAN. C has a relatively esoteric and

. sometimes obscure syntax for declaring complex types. The solution of the
. -problems presented by the C syntax was vital to understanding how all data types

could be described.

31

-a j * a.:, .. *~ * - * .. -

Automatic Documentation Generation

Representation of the scalar types boolean, character, short, int, long, float, - .
double, complex, double complex and void are simple types in that there is a fixed
allocation for elements of these types. These types are in the set of types known to :

the compiler. As in C, DL allows a default typing of functions and procedures,
called the default type. This soft type is aliased to the int type and requires the
same storage as an int.

Types that involve addresses include near pointers, far pointers, arrays, functions -

and aliases. Both near and far pointers are treated as dimensionless arrays. An alias -

provides a linkage between two items of the same type, but separated by
declarations. Aliases also provide a mechanism for coersion of types and type
equivalences.

Structured types aggregate and union are represented by a table structure that
orders their members. Each member of a aggregate or union is represented by a
mem which also has a type associated with it. The same table structure also allows
for storing enumerators belonging to an enumeration.

Labels into code are represented with a label type entry. Upon encountering the
foward reference to a label, an arbitrary label is created local to the enclosing
function block, with the foward reference stored as a pointer in the arbitrary label.
When the label is actually encountered, this arbitrary label is moved to the correct
block. DL then "backpatches" each foward reference through the appropriate
pointer in the corrected label..

During the compilation of the input source, all diagnostic messages are stored in the
parse tree at the point where the diagnostic is generated. This feature allows for the
compiler to mark all declarations with notification messages as it runs, and then
passes this information to the post-processors for further evaluation. I

-o,

32
7

DL Represen-ta :io Ea m .-e

DL Representation Example

~DL Representation Example

The following example is presented to clarify the relationships between data

structures in the output of the DL compiler. The example program chosen is
factorial, allowing the reader to focus on the data structures, without being
concerned with the details of the program. This simple example does not illustrate
all features of DL, but does demonstrate the most common data structures.

The reader should be aware that the picture and listing of tables are greatly
* abbreviated. The intent was to show connectivity rather than showing all of the
* "details. Pruned from the example were all empty tables, and some of the less

interesting pointers, such as parent pointers from the various blocks. For a
complete representation, see Appendix E.

printf (char*, ...);

function long factorial (i)
long i;

{
i f(!i)

return 1;
else

return (i * factorial (i - 1));

function main 0
- {

printf ("the factorial of 10 is%ld\n",
factorial (10));

I

The block index represents the order in which the major programming units,
known as blocks, are represented in the program. The block level denotes the

* .degree of nesting a block has. The value 0 represents the outermost level, higher
levels indicate deeper nesting.

33

.. .

Automatic Documentation Generation

Factorial Example Data Structures

L.

TABU ~~VAR TaBLETPEAL

0/0 factorial 0/0 default
0/1 main 0/1 signed char". "
0/2 prntf 0/2 sil~ved long "

0/'3 igned short

0 1 p rin tf u ., 0 /5 () rt -t 0 /2 : - , a

I/l 70 0/6 near ptr of 0/I

BL:O:K
02 factoriall QUAD TABLE.-

2.?0 ! 1 o
2/1 return,-

TYPE TABLE VAR TABLE 2 2/5 4
2/0 long cons ,= I 2M3 , of type0 2/Isequence 2/6 retum2/ 1 long co nt - I [f 20, 2 n' if

TYETAU 3/0 push .TYEABECDETB
3/1 call3 ong conanA~ - 10 [310 sequence 3/ ps3M0 strng constant - 3/2. 3/3. 3/4 I 32 p C"the factorial of 10 is %1"~" /3/1 seuec 3/ pus

/ 310 , 3/1 1 3/4 c a l. '

Block Index

0 0 external Block # 0 external (Level:O)
I prlnw bltype: BTBASE. blreturn: <no return type>,

2 I factorial bl parent: <no parent>
3 I main

TBL-TYPE (used 8/9 entries) of OT-TYPE
Note: T after Size - full accesa requires far pointer.WE_ mu am Itu ",?
0/ 0 defuh TYALAS 2 of TBL TYPE Q/ "Of I signed char TYCHAR I
0/ 2 signed long Y LONG 4
O/ 3 signed short TY-SHORT 2 I/ 4 () returning TY-FUNC 2 TBLTYPE O/0oO/ 5 (returning TYFUNC 4 TBL TYPE (//2 (10/ 6 Int TY _AILAS 2 of TBL TYPE 0/ 00/ 7 near pointer TYNEAR 4 to TBITYTPF 0/ I neat"'Iaitle

TBL VAR (used 3/9 entflCi, of OTSYMBOI.•

10 Lu Us-At~riutes~cerrcKu0/ 0 factorial USDFCI_ 0/
O/ I main USDECI. 0/ 4Of 2 printf USDECL 0/4

34 0

• QW ~ W - -I
ILA.•

DL Representation Example
'.5"

... '

TEL_BLOCK (used 3/9 entries) of OT BLOCK

Block # I printf (Level:l)
bl type: BT_PROTO. bl_remtum: default. bl.parent: external

TBL_VAR (used 2/9 ntries) of OTSYMBOL
N= Un IZAttributes/Ref erencla

I/0 US-PARM 0/0
. 1/ 70 US_'ARM 0/7

Block # 2 factorial (Level: I)
bL type: BT FUNC. bl return: signed long,
bl-parent: external

TBLTYPE (used 2/9 entries) of OT TYPE
Note: T after Size - full access requires far pointer.
Le SAM CM Sim e
2/ 0 long constant TYCONST 4 Value: I
2/ 1 long constant TYCONSTr 4 Value: I

TBL_VAR (used I/I entries) of OTSYMBOL
kw NAMe UAW L Attributes/References

* 2/0 I USARM 0/2

TBL_CODE (used 2/9 entries) of OTCODE
Id# Ouadruple Sequnc

S2/0 2 7
2/ 1 2/32/4

TBL_QUAD (used 8/9 entries) of OTQUAD
iff 2rtt L&fI Rght Ret

2/0 1 TBL_VAR 2/0 < none > < none > TL TYPE 0/0
2/ return TBL TYPE 0/2 TBLTYPE 2/I < none > TBLTYPE 0/2
2/2 - TBLVAR 2/0 TBLTYPE 2/0 < none > TELTYPE 0/2
2/ 3 push TBL_'TYPE 0/0 TBLQUAD 2/2 < none > TBLTYPE 0/ 3

- warning: automatic cast to result type, left side resolved via TBLTYPE allas(es): 0/0
2/4 call TBLVAR 0/0 < none > < none > TBLTYPE 0/2

* 2/5 * TBL VAR 2/0 TBLCODE 2/ 1 < none > TELTYPE 0/ 2
2/6 retum TBL TYPE 0/2 TBL QUAD 2/5 < none > TBL TYPE 0/ 2
2/ 7 If TBLQUAD 2/0 TL..QUAD 2/ I TELQUAD 2/6 < none >

Block # 3 main (Level:l)
bltype: BTFUNC. blreturn: default,
blparent: external

TBL_TYPE (used 2/9 entries) of OTTYPE
Note: T after Size - full access requires far pointer.

3/ 0 long constant TYCONST 4 Value: 10
3/ I string constant TYCONST 29 Value: "die factorial of 10 ia: %l"

TBLCODE (used 3/9 entries) of OTCODE

3/0 3/2 33 3/
3/ I 3/ 0 3/ 1

TBL_QUAD (used 5/9 entries) of OTQUAD

3/ 0 push TBL_TYPE 0/0 TBLTYPP 3/0 < none > TBLTYPE 0/ 3
, warning, automatic cast to result type, left side resolved via TBLTYPE aliaslesi: 0/0

3/ I call TBL-VAt O/ 0 <none > < none > TBL TYPE 0/ 2
3/ 2 push TBL_TYPE 0/ 7 TBL TYPE 3/ 1 < none > TBL TYPE 0/ 8
3/ 3 push TBL CODE 3/ 1 TBLODE 3/ I <none > TLTYPE 0/ 2

3/ 4 call TBL_VAR 0/ 2 < none > < none > TBL TYPE 0/ 0
warning, left side resolved via THLTYPE aliaa(esl: 0/ 0

%

,-

| 39
-V.

55, ... , . ,. ... ,... '.-,-,. . ,. . -.-: .'.*.. ,.
r . , _ ",'=: ,, ' *". ,- - ,..._•. .. : .,. .,.,,.'. =.':,.,.. . .. ' o. '. .- .

Automatic Documentation Generation

Blocks of the same lexical level are considered children of the block with the next
lower block level. In this example, the external block is the parent block, and
contains child function blocks printf, factorial, and main.

All blocks contain tables to represent information pertaining to internal
components. For instance, the external block has a type table to represent global
types, a variable table to represent global definitions, and a block table to represent .1
subsidiary blocks.".

In the example, the function block factorial has a type table to represent local
types, a variable table to represent local definitions, a code table to represent the
order in which quadruples are to be executed, and a quadruple table representing 1
the executable elements of the function.

Type table elements can be described as belonging to any of these sets: simple types,
derived types, and constants. Each type has a unique numerical identifier referring
to block number and element position, a name, a type classification, size required
for each data element of that type, and related information.

A simple type describes a primitive class of data element. DL supplies every simple
type. Types 0/1, 0/2,and 0/3 are simple types, as shown by type classifications
TYCHAR (primitive for byte length integral scalar data), TYLONG (primitive
for double word length integral scalar data), and TYSHORT (primitive for word
length integral scalar data) respectively.

A derived type describes a programmer defined class of data element that is either a
composite or a direct mapping of other existing types accessible from the lexical
level of the programmer's type definition. Type 0/0 is a direct mapping of type 0/3,
hence type default type is an alias of type signed short, the type classification field
is TYALIAS to denote this. Type 0/5 is a composite type, any function returning
data of type 0/0 (default) is referenced to the composite type; the type classification
field is TYFUNC to denote this. Type 0/7 is another composite type, where any
data element describing a double word address of a location, in which a data element
of type 0/1 (signed character) is stored, is referenced to the composite type. The
type classification field is TY NEAR to denote this.

36

Z PS

,,-*, ,. .-" '¢ -". -'-" " -,,...... 7 ,., , "'''''. - ' ' ", ",-:,,-_,,:,-: ¢ " " " . .. "" ' "" '

r...

DL Representation Example

* .A constant type describes a fixed scalar value that is mentioned as a literal part of
the program text, and therefore requires special attention for documentation

- purposes.

Variable table elements correspond to identifiers in the program that represent
starting addresses of data. Each identifier, or variable, is associated to an element
of a type table accessible from the lexical level of the programmer's variable

S-definition. Each variable has a numerical identifier referring to block number and
element position, a name, a variable usage field, the associated type, and related
information.

"" The variable usage field is important, since it determines if the variable is declared
within a block (USDECL) or declared as a formal parameter associated with a
function block (USFPARM).

Variables 1/0, 1/1, and 2/0 are examples of formal parameters. There are three
functions that are declared as external block variables, each associated with a
function block: printf (variable 0/0), factorial (variable 0/1), and main (variable
0/2).

These functions are considered variables, since a function is represented by a

Todefelocation denoting the starting address of information relating to the executable code
and data of the function. Notice that in the absence of a type mentioned with a
variable, the variable takes on type default; this property is exhibited by variables
0/0 and 0/2.

Variable names can have special properties. Variable 1/1 is a case of an unnamed
formal parameter which was mentioned in the prototypical declaration of function

-. printf. Since DL was not supplied with the name of the first formal parameter, but
only its type, DL creates an identifer for the variable indicating that the name is
unknown. The question mark as the first character of the name indicates an
invented identifier, followed by the number of the invented identifier thus created.
Variable 1/1 is a case of an elliptical formal parameter. An ellipsis (...) tells DL that
zero or more actual parameters in the function call may correspond to the same
relative position in the function definition; a utility useful in describing a function

- with an indefinite list of arguments.

3

I3

Automatic Documentation Generation

Block table elements describe procedural subunits in the program. The external
block is an exception in that no executable code is ever described in it, the other
blocks may have code and data. Shown are two kinds of function blocks: prototype ,. .
functions, and complete functions.

A prototype function incompletely defines a function. Prototype definitions
require a function name, return type, and formal parameters, so that it can be
referenced by the rest of the program. Notice the return type is default (type 0/0)
since the return type is not mentioned in the prototypical declaration.

Block #1 is an example of a prototype function that is not defined in its entirety by
an applications programmer: printf. In this case the printf function is supplied
by the operating system environment of the home compiler through a standard
input/output description library at compile time. We represent it here to DL as a
prototype so the program can be documented as using the printf function, and
check argument usage.

Blocks #2 and #3 are examples of complete function definitions. A complete .",

function definition may have a return type, formal parameters, local types, local
variables, and executable code.

Code table elements describe the order in which groups of quadruples are executed.
A group is a linked list of the bases or roots of expression trees. The first element
of the code table, always #0 in the code table of any block, represents the outermost
level of code body execution. Other elements represent subsidiary sequences. The
quadruples of each sequence are executed left to right.

Code element 2/0 indicates that function block factorial is executed by evaluating
the expression tree anchored by quadruple 2/7, the if statement. The other code -
elements indicate sequences involving function evaluation. Each of these sequences
may involve zero or more pushes of actual parameters, followed by the call. The
push/call sequence is a simulated entry to a routine's activation record, where
placement of the actual parameters occurs in the left to right order indicated by the
function evaluation.

38

.. Si
.................-.- '--.... ...

10K .e 1

DL Representation Example

Quadruple table elements describe executable code tuples, with an operator, up to
three operands, and a result type. Operands can be any variable, constant type, code
segment, or quadruple accessible from the lexical level of the programmer's usage
of the operator. Expressions and other statements are built from a tree of
quadruples.

Most software presently developed by programmers will compile and execute
despite obvious misuses, abuses, and mismatches of resulting expression evaluation
data types. Some programming languages have what is termed "strong type
checking" to prevent most of these kinds of error from passing the compilation
stage. Many programming languages have checks that are weaker or even non-
existent. Large software systems where routines from different software houses
are reused or combined present a potentially interminable problem of interface
errors. A fair assumption on our part is that these invisible errors eventually lead to
undesireable run-time output under circumstances which are usually unknown until
after the fact.

To highlight potential interface problems, DL performs type checking that is much
* stronger than usually warranted for normal programming purposes, so strong that

our term for it is "strict type checking". Part of strict checking involves noting in
. the symbol dump output referencing of all directly mapped derived types (alias

- ;resolution warning), and where warranted implied coercion of non-congruent
expression types even if the types involved are conformal (automatic cast warning).

..The result type of a quadruple is available to check the result of an expression, and
*; to match the types of subexpressions. Quadruples 2/3, 3/0, and 3/4 illustrate

* .expressions that would have passed not only compilers but also lint class code
S.-validator utilities, that involve aliases and coercions.

39

Automatic Documentation Generation

Results

As the example illustrates, retaining all of the details that represent the logic of the
program results in a significant connectivity problem. This problem cannot be
reduced in size, however, without loss of the original intent of the program. The
output generators aiso require different portions of the DL compiler output. , .
Different degrees of abstraction are possible using the collected information. All
details produced by the DL compiler must be retained for the final documentaion
application. In other words, abstraction is deferred until the output of the
documentation application, and this is a user directed process.

We have identified and resolved the internal representation issues, and are now
investigating appropriate maintenance programmer documentation, generated
from these internal representations. The next steps in these investigations will
determine the applicability and usefulness of the documentation using real world
code.

Four applications currently are under development. The first is a highly
sophisticated and flexible cross referencing system. The second is a Nassi-
Shneiderman generator, primarily for lower level documentation and limited
abstraction. The third application will use action diagrams to provide higher levels
of abstraction, up to the program level. Fourth, pictorial representation of data
structures as an adjunct to the first three documentation generators may prove,
beyond acting as a programmer aid, to provide a useful level of documentation to
non-programmer users of the systems being documented. The utility and feasibility
of interactive systems will also be investigated.

400
I. A

40'

0'

. o.

I Appendix A

Review of Documentation Techniques

The following documentation methods were evaluated with a view to their
applicability in the maintenance environment. Each is discussed with its relative
strengths (advantages) and weaknesses (disadvantages).

Pretty Printing

A pretty printer is a stylizer. By reformatting the original program into a
"standard" format, it is possible that misleading indentation (in the original)
can highlight errors. This technique may be quite useful with old, unsightly
source code.

Advantages:

Pretty printing can be implemented for any language. Its
output is in a consistent, indented style for a specific language.

I The style reveals the essential elements and structure of code.
The term for this organizational viewpoint is lexical scope
highlighting.

Disadvantages:

Every language has different dialects known as standards. A
standard is some set of deviations from the original definition
of the language which serves the convenience of a particular
group of programmers. Of course, the original definition is
also a standard that deviates from all the dialects.

An extreme example of a language with a very large set of
dialects is BASIC. Differing dialects of BASIC exist to control
robots, search and maintain database files, support business
functions and control graphics displays. Worse, several
dialects of BASIC exist for some computers. BASIC is not the
only language that shows these symptoms. Different dialects of
a programming language have different coding styles. A pretty
printer must be re-tailored to every dialect of a language.

A-1

.7-.

Appendix A

Warnier-Orr Diagrams

Warnier-Orr diagramming offers a single technique to show functional
decomposition and hierarchical data structures. The techniques's primary
strength is in the design phase.

Advantages:

Warnier-Orr diagramming is a system that offers a single
technique to show functional decompositions and hierarchical
data structures. The system is modular, allowing the user to
specify a design over multiple levels of detail. This
modularity also makes such a design easier to read, draw, and
change.

Disadvantages:

Warnier-Orr diagrams are a human-oriented communications
system rather than a computer aided program design tool.
Specific fonts, printing conventions, and even special forms "
may also be needed. Bottom levels of a large diagram often
degenerate into a form of pseudocode, making the intent of the
diagram difficult to understand. Warnier-Orr diagrams are
therefore more suitable for small programs, or high levels of
large programs.

Warnier-Orr diagrams do not help reveal the extent of
coupling and cohesion between modules. Input-output paths
for procedural components are not shown. Conditions and
variables that control procedural flow are not shown.
Relationships between procedure and data in a program are
also not shown. Analysts may have difficulties using a
Warnier-Orr diagram to diagnose program flaws during
either the design or the maintenance phase. _

A -2 "• - . . -.' " -' " " ",""'. ' , " ," ." , '. '. '-" • " " " ' "', '." ." "." "." "-"". " 'J . -' ." " . ." ." ""', " , "" " - . -'" ,," '" " " "'" d

t Review of Documentation Techniques

Michael Jackson Diagrams

Michael Jackson diagrams show data coupling and cohesion. Logic is not
represented in this technique, which thus is of limited value.

Advantages:

Michael Jackson diagrams are similar to Warnier-Orr
diagrams, since the diagramming technique provides
constructs appropriate to structured programming languages.
However, the constructs are designed to also show data related
coupling and cohesion aspects of a program, something that
Warnier-Orr have no provision for. The pictorial
relationships and structured text within the icons can be
automated, which enable this method to be used for computer
aided program design and maintenance.

Disadvantages:

Sl This diagramming technique shows some of the same
weaknesses as Warnier-Orr diagrams. The lowest levels of
detail in a Michael Jackson diagram can degenerate into a form

of pseudocode, thus degrading comprehension. Also, there is
no provision for showing conditions and variables that control
procedural flow.

Michael Jackson diagrams can become overloaded with detail
as the programs they describe become more complex.
Regardless of intended program size, the descriptive structures
are more wordy than the program it represents. The average
programmer can become frustrated with representations of
even a small program using this method.

A-3
4'

Appendix A

-.

Flowcharts

Flowcharts are an elementary technique easily understood by programmers
and non-programmers. The method is fairly reasonable for maintenance,
provided the flowchart is correct. Unless automated, it is very difficult to
maintain accuracy.

Advantages:

Flowcharts enjoy a rich and ancient history. At the dawn of
modem computer science, flowcharts were the only known
method of diagramming program structure. Flowcharting is
an elementary technique of organization which is known to the
general population. It also is the first technique of organization
taught to students in computer literacy or some computer
science courses. They are widely used, and recognized almost
anywhere. At their best, flowcharts are simple, elegant, and
flexible.

Disadvantages:

There is a dark side that has practically condemned
flowcharting as an obsolete technique: flowcharts have an
infinite potential for abuse! Some of the more serious
problems are:

Flowcharting perpetuates the "spaghetti code" approach to
programming, the flow of control is unrestricted and
unstructured. As such, flowcharting is not easily adapted to
structured programming concepts or techniques. Worse, there
are no agreed upon extensions for structured programming
languages.

Flowcharts make it far too easy to confuse high level and low
level operations. A group of interconnected, internally
detailed program modules can become too convoluted to read.
Program logic and program modularity could thcn be hidden
in a maze of detail. General system overviews are likewise
difficult. Flowcharts encourage the programmers who use

A-4

[".

Review of Documentation Techniques

them to think in terms of older programming styles,
-, exemplified in traditional FORTRAN and assembly language

programming. This slows down the desired trend of more
modem languages becoming acceptable to the community of
programmers, systems analysts, and managers.

* .4.,

A-

-.

5.A-

* A1

-. ., ., .. 4......... ,. ., -,... ,...- . d .

Appgndix A

Flowcharts are not easy to draw. Enough loops or subroutines
can send the drawing off the paper, to hop between sheets
drawing either jump dots or lines leading off the paper. Once
an agreeable flowchart has been drawn, it is very hard to
modify and still keep the same integrity as the original
flowchart. Making room on a page for more constructs
becomes a major chore.

A-6

- - -- . -.

* ~ **P* ~ W~~%S..~y%~ ,,- .-.-.-.. ,..

S.,

Review of Documentation Techniques

S,Pseudocode / Structured English

" ~ Pseudcode, or Structured English, is a narrative form of program logic
which is difficult to produce automatically, and suffers from many of same
problems of standard documentation, if manually generated.

Advantages:

Both these documentation methods behave as a narrator to
actual code. Pseudocode refers to narratives in formal notation
resembling the actual code, yet not as rigorously expressed.
"Structured English" refers to narratives informally styled so
nonprogrammers can immediately understand them. Both
methods can be helpful to depict overall program structure and
architecture.

As an example, a common technique of program design is to
start with a structured English specification of the task to be
performed. Through stepwise refinement, portions of the

_ specification are given increasing levels of detail until the
specification resembles pseudocode. The pseudocode may then
be acceptable as input to a fourth-generation language

.. - compiler, or the pseudocode can be further refined by the
programmer into code acceptable by any of the compilers for
high level languages, even ultimately refined into code
acceptable by an assembler.

• .Disadvantages:

Wrongly used, the advantages of pseudocode or structured
English become disadvantages. Narratives can become
lengthy, difficult to read, even use obscure language or
terminology. Narratives can contain a structure or content that
requires rote memorization to use effectively. They tend to not
be updated, thereby suffering th4. same end as initial

* - .documentation.

A-7

'- . . , . -.- . - . - . . . -. - - . - ...-.. --- -. - .. . : : - - - - --* , . -. ..* -. . -..*- ..- . -.? - -i ; -, :

Appendix A

Nassi-Shneiderman Charts

Nassi-Shneiderman charts are a relatively modern replacement for
flowcharts that is easily automated, especially with structured
programming techniques.

Advantages:

Nassi-Shneiderman (N-S) charts were invented to replace
flowcharting and pseudocode with a method that offers a more
organized view of programming, with constructs appropriate
to structured programming languages. This technique is
deliberately designed to be graphically appealing and also easy
to read, learn, and teach.

Disadvantages:

Like flowcharts, N-S charts are time consuming to draw and
change. This method is best for showing detailed logic only, it
tends to have problems when trying to coordinate the execution -
of many programs. N-S charts are procedure oriented, not
data oriented. This method has no provision for organizing
data structures, and in general cannot be linked to data models. j
It has a further problem with data similar to Warnier-Orr
diagrams: extensions are needed to show input and output data
paths between procedures. Cross-checking for some forms of
coupling is less possible without the extensions, and non-
standardized with them. -

A-'

A-8

Review of Documentation Techniques
[U

P IAction Diagrams

Action diagrams were designed specifically to overcome many of the

, .:.disadvantages of older techniques. They are not dependent on specialized
output devices, and can be superimposed on the languages under
consideration (especially in connection with a pretty printer).

Advantages:

Action diagrams are easily hand drawn, as such they are easy to
teach and learn.

They are easily computerized and as such do not require
hardcopy output forms.

They are well adapted to modem programming techniques.
- Action diagrams extend across multiple levels of data structure j

and procedure design, provide constructs appropriate to
structured languages, and allow cross-checking of input and .0: output data paths.

Action diagrams are a good interface with actual programming
languages. Action diagrams can be tailored to a specific fourth
generation language. Graphical relationships in an action
diagram are also decomposable into low level code.

Disadvantages:

- Action diagramming is a relatively new and unknown process,
and has not yet gained the degree of acceptance and number of
adherents as older methods have.

A-9

* " - ,,.-.-.- . .-... - .--. ";. ". •-. ,? ... ,., , : 21- . ,

Appendix A

HOS Charts

HOS (Higher Order Software) charts guarantee provably correct programs -

when no modules external to their immediate control are used. They have a
highly mathematical rule-based orientation, and needs much patience to
learn and use correctly. They are not considered an appropriate mechanism .1
since most (or all) code was developed "outside" of the HOS environment. 1
Advantages: ,

HOS is one of the most mathematically rigorous development 7
methods ever devised. HOS notation extends over multiple .1
levels of program design, and binds data and procedures to
each other intrinsically. Therefore HOS is valuable in creating
highly complex specifications with little debugging, in a settinginsensitive to a specific language.

Disadvantages:

HOS is very different from other, more widely known-
techniques. It uses a highly mathematical rule based

orientation, requiring much patience to learn and use 4

correctly. HOS is not easy to use, and can create specifications '
more complex than one person can properly manage. This is a
team-oriented tool, useful primarily to any professional analyst ".:
who can understand the potential power of the method.

A.1

A-lO

• - • . % " - % * " l~ . - . " . . -, • % * ,- - • • . . • •. ° * ° ' . . _. " .' .o° . .- . o ,° - . • - % " 0

Review of Documentation Techniques

Cross Reference Listings

An adequate cross reference listing with derived information can provide
the programmer with a quick method of determining where to look for
changes to variables of interest.

,.-

Ai
° -o. .. t . .

Appendix B

Operating System Level Organization

The parser/documenter executes in two phases:

In the first phase (Figure B-i), the documentation pre-processor (dpp) converts the
raw source code into a file containing two major classes of information:

The first class of information is preprocessed source code, expressed
in documentation language. The second class of information is an
augmented overload matrix of operators. The standard overload
matrix of operators for documentation language is combined with
additional overloaded operators that are present in the source code
and recognized by the preprocessor.

The parser/documentor converts the pre-processor output into an intermediate data
file containing the entire meaning of the raw source code (complete semantics).
The intermediate datafile is machine readable, and human checkable.

Preprocessed source Intermediate data file

. ' "-Language overload matrix

Figure B-1

The second phase (Figure B-2) uses the intermediate data file as input to an
application, creating a user-readable output.

if oad ap~ication - ott

Figure B-2

Available applications include: Symbol Table Dump, Cross Reference Generator,
Source Code Pretty Printer, and the Nassi-Shneidermann Diagrammer.

-" B-I

-. '.

.7*' "_ 7-t7 P.-.;' --------

Appendix C

Symbol Table

' %,

Block Level Organization

The parser/documentor converts major program units into subsidary symbol
tables, called blocks. All blocks have the same general structure, and have specific
information related to the specialized purpose of each block. Figure C-I shows the
general organization of a block.

All symbol tables have an external block. The external block anchors the entire
symbol table as a base pointer, and contains the primitive type definitions, such as
integer, long, float, character, and so on. The external block contains the external
definitions (type, variable, enumerator, aggregate) and anchors the first-level
program units.

Program units are either compound statements (nameless function blocks), or
functions (named function blocks). A function block is a compound statement with

* additional name, return type, and parameter information associated with the
function declaration.

SBLOCK ORGANIZATION

;' block

statement
rblock Cb-

:'":0 0
r0 0
"0 0

t .Icompound function
• statement

block block

i.; Figure C- I

C-1

I -
. - . ,I'-." ".", 2. ..- "-". --- -" e ,l," z c"" . ." """ " ' .,16 , , : €' ' ; J ' " " f " ' '

Appendix C

Block Internal Detail .- Block Operand

Each block contains a set of data and pointer fields. The data fields specify
the block's serial number, name, block type (e.g., compound statement, or
function), and lexical level. Figure C-2 shows the relationships between data
and pointer fields in blocks and between a block and other data structures.

The pointer fields link blocks to their parent blocks, return types, lists of
formal parameters, and definitions tables. The definitions table is a table of
pointers to tables of definitions. The blocks table links a block to the
corresponding subsidiary blocks. The other tables link this block to each
defined operand pertaining to this block.

Definitions include code segment operands, symbol operands (members,
variables, enumerators, enumerations, structs, unions), type operands (type
definitions), and reference operands (reference definitions), as well as block
operands (block linkages).

The return type linkage is a link to a type operand, the formal parameters list
linkage is a link to a list of symbol operands, and the parent block linkage is a
link to a block operand.

: I ~~~Parnt block serialnumber -- Rtmtp
block name
block type ,

block level
Formal 000 Formalprmtrparameter ""

BLOCK
Blocks StructsINTERNAL .

DETAIL Code segments Unions
Members Type defns

Enumerators References

Enumerations Variables

Figure C-2

C2.]

C-2

'5*' *5** - *- .5.. ... - . - -. 5 -.-. 5-.

-:-X -(--? .? -- .- :"- :.":-.-.:' -L ,-'; -:::-"-.?L.-L-: L:..i.. .. :.L3-.'i.' - .- -. :-- ::):L-:". .-..""..'.. . . .'..'. . ;?ii: :

Symbol Table

Symbol Operand

The symbol operand, represented in Figure C-3, is used to represent
variables, members, aggregate and enumerator tags, and enumerations. The
operand class specifies either a member, or a symbol. The usage class
specifies a formal parameter, or other declaration. The parameter number

- denotes the order of the parameter in a function block's declaration list.
Other data fields indicate the symbols name, size, and storage class
attributes.

The symbol always has a link to a type operand of some kind, to denote the
type declaration of the symbol. Variables and members may have an initial
value as indicated by an optional initializer. Enu-nerations have an ordinal
value. Either of these values may be specified via the symbol's value
operand.

Aggegrate and enumerator tags have an owner link. The owner link is a type

*, operand that connects the aggregate or enumerator tag to other symbols that
may require the tag as a type definition.

symbol's symbol's
" owner fink tp

. . / o[r0 c l a s s

aluname
size

parameter #

" :. usaize clas
- " attributes

-. symbol's
"'" " lvalue

Figure C-3

-IL,-. C-3

.|* ~

Appendix C .6

Type Operand u

The type operand, represented in Figure C-4, is the most general purpose
operand in the entire symbol table. The type operand serves a number of
purposes, depending on the type variant being used. Any primitive type has
no variant. All types have a link to their parent blocks. A type may have a
table of references. The type has data fields corresponding to the operand
class (type operand), name, storage class attributes, and size.

p..

Parent Block References

operand

name
typclass

attributes
sine

type variant

Figure C-4

The type variant in use depends on how the type operand is utilized. Near,
far, function, array, and alias variants all have pointers to a subsidiary type,
but the array variant also has high and low bound data fields. Aggregate and
enumerator variants have an index to the member table in the same block,
and the number of entries starting with that index.

The link variant serves as a connective element by linking the structure,
union, and enumerator tag to any type using the link as a subsidiary type, and
any symbol using the link as the symbol's type. The compiler variant serves
as a temporary type, an intermediate result brought up from lower to higher
production rules. The label variant serves as a statement label, and refers to
a code operand. -

C-4

P ,:t1

Symbol Table

Value Operand

The purpose of the value operand, represented in Figure C-5, is to hold
initial values. The operand class is value operand. The value class indicates

A which value variant is in use. Value variants are structures that hold
constants. Examples of simple constants are the integer, character, floating

. point number, or string.

*, I • .- operand class
" value class

"- •.value variant

Figure C-5

Reference Operand

The function of the reference operand, represented in Figure C-6, is
-"to hold reference information for any identifier. The operand class is

reference operand. The file reference and line reference indicates
the file and line in which the identifier was mentioned, the usage type

' .- indicates the context in which the identfier was mentioned for that file
and line.

i: '::' operand class

[file reference

'. ?' Iline reference
usage type

Figure C-6

C-5

.- ,. . . - - . . - .-.... .. J J...& - ..~ -. . *. .. -.... .-.... r . . .- -.. .

WrTW-j-* -- .- . . .* .

4

Appendix C-

Code Segment Operand

The purpose of the code segments operand, represented in Figure C-7, is to
store quadruples of executable code in a linear array. The linear array
represents the order in which the quadruples are to be executed. The
operand class is code operand. There is a field for the number of -
quadruples in the array, and then the quadruple table, which is a pointer to
the first quadruple in the array.

~/
operand class -

J#of quadruples"-
quadul table quadrupl [0 0 01 dupe"

Figure C-7

Quadruple Operand

The function of the quadruple operand, represented in Figure C-8, is
to store a unit of executable code. The operand class is quadruple
operand. There is a field to indicate the operator, and pointer fields
for up to three operands to be affected by the operator. These three
operands can operands of any class. Hence value operands serve to
hold constants, quadruples serve as intermediate expressions, code
segments serve as statements or as actual parameter lists.

operand class

operator j
first operand

Pe cond ope rand""
third operua".

Figure C-8.-

C-6

.. -. ,7 .

Symbol Table

Symbol Table Example

Consider the external declaration statement "register int i". It parses into
the structure shown in Figure C-9. The external block has all the primitive '

types, including "int". The first level block is the external block, so "i" is a
symbol operand in the variable table of the external block. 'T' points back to
the "int" primitive type.

register int i; 2
, ,. external block"

I nt

000 o
fl oat

type table variable table

Figure C-9

C-7
. L A .

Appendix C

The primitive type, "int" in the example shown in Figure C-10, is a type
operand named "int" with: no type variant (because it is a primitive type),
subsidary type of integer, a size of 4 bytes, and has signed, long, and integer
attributes. The parent block of "int" is the external block. "int" has no .
references (being a program keyword) and the null pointer indicates that.

Sexternal block ,

type operand

"t"iiinteger class""
attributes: ; '

integer

long '' .

4 bytes -""

no .

type variant -".

Figure C-l .-.0"

C

.d

F-.- ,.

C-8 j

Symbol Table
-4

The variable "i", in Figure C-11, is a symbol operand named 'T' with: no
owner link (because it is not a member of an aggregate or an enumeration of
an enumerator), the symbol's usage is declared, no initial value, type "int"
(pointer to that type is present), and the same attributes as type "int" but also
with the register attribute. The parameter number was set to zero, but this
fact is irrelevant since the symbol is not used as a parameter.

-, .no owner link
j " ""int"

symbol operand

parameter #0

usage: declad
attributes:

integera ' ' ' signed
• , "'"long

U~ - d

no initial value

Figure C-11

C-9

Appendix D

Documentation Language Flowgraphs

Appendix D shows graphical representations of the Documentation Language mentioned in the
main body of this report. The style shown here, frequently refered to as a railroad diagram,
indicates the order of acceptance of identifiers, punctuation, and keywords by the language via a
top-down series of productions. A production indicates how a series of parsed symbols becomes
another production. The series of parsed symbols is accepted in the order indicated by the
production's flowgraph. The information is then transformed into a data structure, which is carried
by the resultant production.

ONE OR MORE INSTANCES
rule (object type)

rule (object type) becomes ONE OR MORE INSTANCES

In the above example, the symbols comprising one or more Instances of "something" is
transformed into an object type carried by the production rule. Flow of control generally
proceeds in the direction indicated by the arrows. Th large arrow indicates that a transformation
has taken place, with the abstraction on the left indicating what symbol or symbols were involved,
and the abstraction on the right indicating the result of the tranformation. The phrase invoking the
word "becomes" indicates the specific nature of the tranformation, which usually is by assignment
but may be the result of a function call.

Supplemental Legend

NON-TERMINAL ~ a ~ e e

TERMINAL punctuation terminal

OPTIONAL INSTANCE

IL: OPTION A

OPTION C

D-1

Appendix D

At

defi-.~nition list (lst] . ~ file (list)
(not yet implemented)

file becomes external declaration list

external definition (list)external definition list (list)

(not yet implemented)

external definition list becomes:

one external definition external definition
more than one concatenation (catlst)

of external definition
to external definition list

.function prototype exera deiiio erms
"(opnd) (not yet implemented)letmldfnto eolms,

function prototype -""
definition]. (list) I 'M Iexternal definition bec 'mes

definition I
"J ~ ~~def.nition2 (list) I "

7~ external definition bec me
definition2 7 "

• l null definition (list) " '

etnexternal defindtiion be
null definition '"

~external definition (1.'st)

D-2

AI
', ,- - , -, ¢ -/ -, , " " " ,, - . - . ' - . . , - . . " . o . - ' , " . - " . - . - - d- . ..

Documentation Language Flowgraphs

delaato spcfir(ye

definition (tee acivte by side-effecte
stat stc declare

declardtorl. (tree

~~~*declarator 1it(it

p.elr de( rtrls

defiiti ctivatob spdeciffect definition2 (hist)

p..declare (this conversion is used as a side-effect)

p dchain(
declarator2
declaratorl

NUL(odeclarator list

nudefinition coes nulle-ffctM definition (list)

nuldclr ( declaration specifiers(hscneso sue sasd-fet

'9.fin

p dhai

declaraD-3F . -. . - l



U .R ~ X . .* . - ; - J j - - J ." . , - - r.h

Appendix D

declaration 6pec list (typ)

declaration specifiers becomes declaration spec list d i3

fI,d~~~ deplcration (petypee))

declaration spec listytype

declaration spec list becomes: declaration spec list (type)

one declaration spec declaration spec
more than one : patrchk

declaration spec
declaration spec list

(merge declaration specs if possible)

struct spec (type)

declaration spec becomes struct spe

S TYPEDEF J "'

declaration spec becomes p-tamark (TATYPEDEF)"- ,

(set TYPEDEF attribute flag) ,""

type)

.. . .t...de..e..m.. .c.m.. ...ty.ype... ... ion

. . . . . . . . . . . .. .. struct spec (typl.ye..i..

D-4 -



Documentation Language Flowgraphs

parameter spec: beomes storage class specifier

tyI pcfir(ye
parameter spec become type specifier

PM parameter spec becomes complex type specifier

parameter spec (type)

AUT

* storage class specifier becomes
pjamzk (TA_VUOA) e UOatiue

(stamr VOLAILE S at sebte) N triue

~storage class specifier (type)l

-- G N GE .sorg class specifier--- becomes ~



Appendix D

type specifier becomes

p tsmark (TA,.YI) (set VOI attibute)

typyp specifier (ecype)

tyeseiirbcomex yesecfe
~~~~ecmsp_tdmd T.LAT stFOar bte

-spec(typedef namee

Lcomplex type specifier pe

beoms-6gmr

(src or.un.. .,..

S ~S ; ~ ~ t. A . , 5 5

Documentation Language Flowgraphs

STRUC'11'truc or.......on..b....o..e.

TBLUNION (select union table)

struct or union (table type)

7 typedef name (type)

U p.agm ark (struct or union,
optional identifier (string) optional identifier),

*ush STRUCT signal op STRUCT signal from private

typomle typee defniio (type)sreurin
ggegte-7nwep

.E1

E N Mc m l e y e d e i ii- e o e

D-7

-. A.

IN ',',

Appendix D

gtruct definition (list)

S,.

struct definition list (list)

struct definition list becomes:
one struct definition : struct definition
more than one : concatenation (catlst)

stnzct definition
to struct definition list

tostruct tioniorototst

t 7 ~~not yet implemented) struct definition becomeP 1satfnto r toye"
,J ~struct function prototype ,'

"J parm definition (opnd) a
"1 struct definition becomet""

parm definition

struct null definition (opnd) c7 struct definition becomes "

stflct null definition

struct definition (list)

" 7 sW-L truct definition I (list) pr eiiinbcm~~tutdfnto ::'

struct definition2 (n nd)
parm definition becomes "

struct definition2

parm definition (list) .4

-'

D-8

. • . • . " '. ° ' , - _ • - • - . % • . ." . . '. . .. % - . % " , • . - f . a• . h - t- , - ..

r~~~~~ ~1 .- r W ~-rF.. v .- T ~ ~ P ~ ~ 7777-771-7191-7
Documentation Language Flowgraphs

atict specifiers (typee)ntin lit

declavtor2(tree Citdecstck (p r) v

declardeola. (toee

- dclator list (it

struct definitionl. becomes
p ~ d e l a m s t r u t s e c i f e r ss t r u c t d e f i n i t i o n 2 (l i s t)

p~define(A pdcbain(
declarator2
*declaratorl.

NU(odeclarato r liis)

struct nulpefinisionybecoe

nulldc (sin t ruc spec iers) nul definition2 (list)

tucspcfesbmsstru ctse itsnct specifiers (yerjfn
e D-9ai

ec'aatp

decluat...

NULL (n delrao list).

.r c s e i i rs (y e)lii

Appendix D

J struct spec (type)]

strct spec list becomes:
one struct spec :sruct spec s
more than one : patrchk (struct spec

struct spec list

(merge struct specs if possible)

.3 enumerator (opnd)]

enumerator list becomes:
one enumerator : p-list (no list, enumerator) enumerator list (list)

create single element list
more than one : p_list (enumerator list,

enumerator)
create multiple element list

enumerator constant (opnd) n tx)enumeatorbecomes

p(etmval (enumerator constant.
enumerator constant (opnd) no constant expression)

enumerator becomes-constant expression (opnd) p_enmval (enumerator constant,
(not yet implemented) constant expression)."

~enumerator (opnd)

r IDENTIFIER) ":

enumerator becomes-"

pnmaken (IDENTIFIER)
(create enumerator operand) enumerator (opnd)

D-10

Documentation Language Flowgraphs

declarator list becomes: -- declarator list (List)
one declaration : plist (no declarator list,

pdefine (declarator))q
(create single element list of declarator)

more than one :plixt (declarator list,
p..define (declarator))

(create multiple element hist of declarator)

declrato2 (tee)declarator becomes

d e l r t r - - t m)
p ~ d c h a in (d e c l a r a t o r 2 , d c a a o l

declarator (opnd)

declaratorl becomes
declrato3 (tee)pjinit (nodeclarator3,

optional initialization)
(transform initializer into tree)

declaratorl (tree)

D113

% . -.

77 V'.% -N-

Appendix D

declarator4 (tree)

r E~ declarator2 becomes%
push DO on rivate p dcor (nopointer, declartor4)
puh CO o pivte (create tree withou pointer)%

sonter ta lis

ddeclarator2 (tree)

(crett suttiactee

declarator (tree)

(aatr belrtr ecaomes become (aryseres

(not yetimplemeted) p l ai3 ecoen (declax t (tpepa)

(ceaecte aeteie xrsion tree)

declarator4 (tree)

-7I

EDENTIF-E
declartor4 ecome

p~didet (H)NTUMR

(ienifertre

Documentation Language Flowgraplhs

declaratot6 (tree) declarator5 becomes
p...dhain (declaraor,6,

T ; declartor3 (tree) p...dinit (declaiator3,
r no initialization)

pop D cR rm p rivate (combine trees)

d declarator16 (tree)

~ -/ declaratorS becomes

POP R from private p~dchain (declarator6,
stat stak (pop)no tree)

stt stc ppp (convert tree to form compatible
for declarator4)

declarator5 (tree)
-- 7

'j delrtr te)g

delaar becme

'It h. DCR=%pivt jo nopitr dcaao,

(sa sak pps) cet-re ihutpitr

pone (it

'tate stck(puh

wo

declarator6 (tree)

D- 13

Apandix D

pointer become:
one iteration p-Het (no pointer.

p-gar (Amr
liited specifier)

(create single element Hiat of pointer)
more than ones : p_44t (pointer,

p-astar
limited specifier)

(create multiple element Hoti ot pointer)

ear becomes TYNEAR

........ fjj (select near type clan)

star becomes TYNEAR
(select near type class)

...........
star becomes TYFAR
(select far type class)

" 7 star (class)

limited specifier becomes
TANONE (select null attribute)

CONST
limited specifier becomes

TACONST (select CONST attribute)

VOA I imited specifieor become.

TA VOLATIL (select VOLATILE attribute)

limited specifier (attr)

D- 14

r '4

Documentation Language Flowgraphs

[J.. (.array entr (init)

j array series becomes:

one array entry : plist (no array series,
array entry)

(create single element list of array entry) array series 'list)

. more than one : plist (array series,
array entry)

,- (create multiple element list of array entry)

% optional constant

e---expression (opnd) '

array entry becomes

p dbound (optional constant expression)
(create array bounds operand) array entry (init)

optional identifier becomes null string f

IDENTIFIER

optional identifier becomes IDENTIFIER

optional identifier (string)

iiaitooptional initialization becomes null initialize

.. J initialization I

(not yet implemented)

optional initialization becomes initialization

optional initialization (init)

•F

optional constant expression becomes null .

operand
constant expression
(not yet implemented) optional constant expression becomes constant

expression

optional constant expression (opnd)

D-15

",. ,' '- '" " '-:'," '- '- -," .- ,-,-,... ..,, .,. . , ', " , , x " . . . ,. ,, • . . .

u

Appendix E

Compiler Data Structures

Operand Identification Structure - Opnd

op_ty operand type (OTBLOCK, OTCODE, OTJJIST,

OTMEM, OTNJT, OTQUAD, OTREF,
OTSYMBOL, OTTABLE, OTTYPE, OTVAL)

*. obblid owner block identification (nt)
op-tbl owner table type (TBLAGG, TBLBLOCK,

TBL_CODE, TBLENUM, TBL.ENUMERATOR,
TBL.M)EM, TBLTYPE, TBL_UNON, TBL2VAR)

- op_nry: entry number in table (int)

r.,. op-tbl

i. op-ntry

- All operands (Block, Code, List, Member, Initializer, Quadruple,, Reference,
:: Symbol, Table, Type, and Value) have an operand identification structurethat
i essentially causes each operand to behave like tagged storage. The operand

identification structure is a tag that allows the Documentation Language routines to
~determine the operand type, owner block number,,owner table type, and entry

number for the purposes of selection, decision, and verification. In some modules,
~the operands are visible only by these tags, and the operand type needs to be

determined before individual data elements can be accessed. In other modules, the
operands are visible by the individual operand type structure; to determine what
information exists in the tag the operand can be coerced (cast) into the operand

i. • identification structure.

E- I

.r ".

• -: :. '. .'..E: . -, , .. ._ I ' '.

::-i

Compiler Data Structures

Linked list structure operand - List

lity variant indicator (LIOPND, UHEAD, .1_TBL)
lijnext pointer to next list structure
likind. li_opnd pointer to single operand
li kind. hilast :pointer to findal list structure
li kind . litab multiple operand variant
li_kind .litab, lintry number of operands (int)
liN. kind. ltitab .listart pointer to first operand

OTLS ikind . i~last _7i tyI-Y

. I op tb l I i "exHop-ntry

List head variant

OTLISfT Iikind .lii-opnd li-ty
op-blid [-IOPND
op tbl Ii_next
op ntry O -- - it [.Lis

Single operand List variant
.,4-

OT_LIST Ilkind li_tab Ii-ty i

op-blid l ii_ntry UJ IL
op tbl I I ti- next I:
opntry / ii_ stan List

000

0OpXd Opod

Multiple operand List variant

The variants of the linked list structure operand work together to form linked lists.
A linked list always starts with a list head variant. Following are a mixed series of
single or multiple operand variants. The field Ii kind./i last always points to the
final list structure operand in the list. The multiple operand variant uses a double
pointer sequence to access a linear series of operands. An example of a linked list is
shown on the next page.

E-2

.-.

Ap~ndix E

g Example of linked list using List structure operands

OT-IM i-ty
oM.. ind .liopnd _PN

*op-tb li-next
opntry

op-blid H-kind . i-Opnd U.-OpND

opjbl 1i next
4, op-ntry

CU E-3ndf-tb lit

op-bli fi-ntry*.. *.TB

optb H' .'n.....

Compiler Data Swcture-

Sequence is: list head, single operand, multiple operand, single operand.

E-4-

'C

S..m

.• -*5

' %

.5

E-4.

. i

5 . 5 ,. - S

Appendix E

~ Type Operand Structure - Type

Bloctk yp Tablen

op- ty._class ty..name -tr

* StUio Type Variant

-T1'~ ty..parent ty..ref tindty-ag]

OPjblr ty-Slass ty-namne i FT
op..ntry TYU1N ty..attrs ty tres

tyusize

n eion Type Variant

ty..pare T TP yparent blcko typre (t dtemieeical scoe f tpe

tam nlameso ty am (string)
tyattrs type's a triuts attr) yenre

ty..sie sizeof typ (long

ty...kinayag table depeden vYariat TYAGGNIO, TYJNTN, TYEUM)

kidyy..agrestr tpso oefefrtenetrynlelvntae

ty..kind.ty-agglty-entries number of entries in relevant table

E-5

Compiler DtStructures

Type Operand Structure (cont.)4

Bloc Table

o''TpE tyd parent ty-ref tyjkmd ty-addr

op-tbl ty-class ty-name t-o NE]E

op-ntry T'NA -atsty-high: UNDEFINED

Near Type Variant

Block Table

Oq-Y E ty parent 4 yref ty..kind tyaddr

op tbl ty-slass ty-name t-o NEIE

ty..size yf

Far Type Variant

BlockTable

01-TP ty-parent tyref tykind t..ad

op tbl ty-class ty-name t-o NEIE

op ntry TYFUNC ty attrs yhg UNEJD
ty-.size yo

Function TYpe Variant

tykidnd.ty -addr type dependent variant (TYNEAR, TY_FAR, TYFUNC, TY_ARR, TY-ALIAS)
tkind.ty-addr.ty-low low bound of array subscript (used in TYARR)

ty-kind.tyaddr.tyjulgh high bound of array subscript (used in TY_ARR)
t-knd.ty-addr.ty-of subsidiary type (type of type)

E-6

AVIendix EI

Type Operand Structure (cont.) abe

OTTP ty-..parent ty..ref ty-kind tyaddr

op-tbl ty..class ty-namne yo LTD f4F

r.ty..size Iyo
yp43

Aliased Type Variant]

O-TP ty..parent ty..ref ty..kind. ty-addr

Array Type Variant

l abel TypeVain

tykin.ty-addr type dependent variant (TY-NEAR, TYFAR, TYFUNC,
TY -ARR, TY-ALIAS)

ty-kind.ty-addr.ty low low bound of arrmy subscript (used in TY-ARR) .
tykin.tyaddr.ty-igh high bound of array subscript (used in TY-ARR)

ty d.ty-addr.tyof subsidiary type (type of type)
ty..kind.ty-label statement label (TYJ'ABEL)

%ty-kind.ty-label.ty-ref label efrene operand (opod)

E-7

%A

Compiler Data Structures

Type Operand Structure (cont.)

Block Table

...TYPE ty..parent ty-ref tyind .ty-constZ
op -blid --t y

op-tbl ty_.class ty-name

op-ntry TY_CONST ty-attrs
tysize

Constant Type Variant

Block Table

ty-parent 6 tyref ty-kind . ty-link

ty =class ty name _Iktype
o ty TY]1 4K ty str ysylink '-- Symbol

ty size

Link Type Variant

Block Table'-"

OT.TYPE ty-parent ty ref ty kind ty-yacc
op-blid

OPjbl ty-class ty-name ycryType

op-ntry TYYACC ty-attrs
ty-size

Compiler Type Variant

ty-kind.tyconst constant type variant (TYCONST)
ty-kind.ty-const.ty.val value of constant type
tyjkind.ty_link link type variant (TYLINK)
ty-kind.ty-link.ty sylink symbol link for aggregates and enumerator types
tykind.tyjlink. tylktype specify which type is using symbol link

(LKSTRUCT, LKUNION, LK_ENUrM)
tykind.ty.y acc compiler type variant (TYYACC)

tykind.ty-yacc.ty-carry type being carried through grammer by compiler type

E-8

S -- j .. .,= .. , .. e ,. _,. ., -== a -. . - -. = ,t:. - . . - .- J

AppndixE

! Symbol Structure Operand - Symbol
and

Member Structure Operand - Mem

Type Val

• opblid
op-tbl sy_parm

. . op ntry sy-usage
I3", 'rM sy-attrs

. op blid

optbl
op ntry

sy_name symbol name (string)
sysize symbol size (long)
sy-parm symbol parameter number (int)

.sy_usage symbol usage class (USDECL,USFPARM)
sy-attrs symbol attributes (attrs)

S.sylkype pointer to symbol's owner link
sy-ef pointer to symbol's reference table
sy.val pointer to symbol's initial value
sy-type pointer to symbols's type

[.

The composition of symbol and mem structure operands is the same, except that
the operand type field, op-ty, is difftrent (OTSYMBOL for symbols, OT_MEM
for members). Symbol operands belong in binary searched symbol tables, which
are appropriate for random-accessed entities such as struct and union tags, and
variables. Member operands belong in sequentially searched member tables,
which are appropriate for sequentially accessed entities such as members of structs
and unions, and enumerations within an enumerator type. The Symbol Table
Variant is the Table Structure Operand in which symbol and member operands
are stored.

E-9
-4 -- 4 --

6 Compiler Data Structures
6

Value Structure Operand - Val

0r VALvA const Vlstring
Iop~b VL _STRING

op-tbi ______

I.TYAL Aici jcnst Ach
jop~bid~ VLCHAR
optbl

Iop-ntbl

OT VAL A~v const Adul

OTYL v-vi const . -intbs

vi ci. vl-csAconst. vicomplex
Iop..blidl I

op-tl _COMP.EX vi-const.vl-int.vl-real
op-ntryvl-const.vl-int.vl_imag

vi-cls value class (VL-STRING, VLLONG, VL-DOUBLE,
VLCHAR, V.SOMPLEX)

vl-const.vl string string value (string)
vi-corist.vl-char char value (long)
vi-const.vi-double floating point value (double)
vi-const.vl-int.vl-long integer value (long)
vi-const.vl-int.vl-base numerical base of integer value
vl-const.vi-complex.vl-real real component of complex value
vi-const.vl-complex.vl-inag imaginary component of complex value

E-10

% *4~~v~*~-,

- Initializer Structure Operand - Init

aVa

in-nval number of initializer (int)
*in-val value of thisinitializer

in-next pointer to next initializer

Quadruple Structure Operand -Quad

P-tw

qd-op quadruple operator (opcode)
qd-opad [3] Up totlree pointers to operands

Code Table Structure Operand - Code

OTCD cdnquad c.qa
op-.blid cd~quad
op tbl
op..ntry 0 00

Quad Quad

cdnquadnumber of quadruples used in code table
cdjnqual number of quadruple spaces allocated to code table
cdquad pointer to first quadruple in code table

I

E-1I1

Compiler Data Structures

Block Structure Operand -Block

BI oc

i ' : ~o p b lid - b l9'- n a m e b a 1].
-optbl bl type -

op-ntry bllocked -0 Table TBLAGG (Struct Table)

1 D] Table TBLBLOCK (Block Table)

[2] Table TBL_CODE (Code Table)

[31 Table TBLENUM (Enumerated Type Table)

[41 Table TBLENUMERATOR (Enumeration Table)

[5 Table TBLMEM (Member Table)

[6] 0 Table TBLREF (Reference Table)

[7] - Table TBLTYPE (Type Table)

[81 Table TBL_UNION (Union Table)

[91 Table TBLVAR (Variable Table)

bl id block identification number (int)
biname block name (string)
bltype block type (BT NONE, BT_BASE, BT BLOCK, BT DATA, B rFUNC,

BT_PROTO, BT SUBR)
bllocked was the block described as a function block with parameters and compound

statement? (True / False)
bl level lexical level of block (int)
blparent pointer to parent block of this block
blreturn pointer to return type of this block if this block was described as a function

block
blformal pointer to formal parameter list of this block if this block was described as

a function block

E-12

,,e,

, . . .k. . , g . 2.r1t - .
1
Wi . ~V . , .

. -=
.. ..) -' .- , . ,, . . . - .- _ . -. .Y ,

"5,

Table Structure Operand - Table

SOT 'rABIE ta otyp t -l

op.blid OTI'_BLOCK
op-tbl ta tbl

op-ntry tantab tatab tablock
.. : ta-mtab

Block Table Variant tatbl : TBLBLOCK (1)

CTABLE tabrtyp t bl _op-blid OTCODE a_op-tbl ta-tbl-i!optr, .ta-ntbab ,._,ab , ocode

- lC de I od I5° '_ _

Code Table Variant tatbl TBL CODE (2)

Oat TABLE ta dttyp tab TT
opbli OTREF Otbl O -- B)

• .. a bs citaotbl bo (0 t 9 s

tantb umerofetris th tale .

Sanm o raopcntry taentabh

-.. bkotamtob

• "ef I " Ie
" "-Reference Table Variant tatbl •TBLREF (6)

ta-otyp operand type in this table (OT_BLOCK, OTCODE, OT _REF,
OT OPND, OTSYMBOL, OTREF)

.'"ta -tbl specific table in owning block (0 - 9 : see Block Structure Operand)
ta-ntab number of entries in this table
ta-mtab number of entry spaces alocated to this table

. "ta blk pointer to block owning this table

tatab.ta block pointer to first block entry in block table
tatab tacode pointer to first code entry in code table
ta_tab.taref pointer to first reference entry in refere, ice table

E-13

6 w.

Compiler Data Structu-,1

Table Structure Operand (cont.)-

op ldOpNeFrad Table ain

Symbol Symbol

Symbold Table Vari ant

cecdtabl(ybl).hG 0 TLEU 3

OTTABLE Ia_1Y ta bl
op-blid cn*_rS IaBbi

op-tbi ta _ bi
op ntry ta ntab IC _tab ia-symbe

InS IV Mb 000

Type T ymbl l Varant e tWIntBLTP 7

ta_tabta oSymb o ne toLAC firs operand U enryi 3tbl

tajbtasyember) pntr tofiNtsMbRAOl (be) try inmboE mmerMal

taabtat p poi ta nter to -tabs typ ty qpe tal

E-14ta

m SN HCIVENTATIIU N I SOFTIE *INIC EIWJI(M
TECHfIC#L SOLUTIONS INC HESILLR PRf NN

L D LIS ET RL. 29 RUG 87 MO-22935. 1-EL-S

IUCLRSSIFIED DRAA02-95-C-WU2 FIG9 12,'5 NLEhFhEch

N a
-. - - -. A - -. A - a A a U

WI

Np

'I

1%
B

A.

I 1.0 : ~ i~
II- : ~

L1IIBI L. ~

111111.25 1.4~HII - BIB~6
'N

'5,.

.55

N,. M I'

N,
NI~

'N

N)4

Np.

55,

NN~

* '~.%. %N%%SNNN ~ - - ~ N*N*JN*..*JN*.NN.**.
5

N..J.

~ ~N/N-NN..NN ~. a . N'~~VV ~

* A........* -~ ~ A 55N**.N.PJ

0 0 S S * '0 0 0 0 0 S 0 6 0 0

% N.' ~ % . N- N ~ Na. '~
.N~AANNANNN N- ~ 'N- N N - ' ... '5V~- ..

'-N ~ a **N N-~~%'N\NN
N.dNN*NA~.*.*.,N*. - %* * ~N N N-~%~NA,*NNaNN..~N..N *~

- N~
N *N~~4*J**9

5 ~
*~ - *N N... a N~N ~' ~ ~ *,. N'.

'5. ~ ~ .NN~NAVN N N - N*N-NN-.N'N 'N *~N N- * *NN.N*Nq*~N rn . a ~ . -. .. *
-- fl-~-M --. . .. A ~A .A * U

Stack state structure for private stack - State

at~eil State

it_tnt
' e.

td cae I-P e

m

...

* Slatet

st-signal compiler state signal indicator (Signal)
st declare string storage for declarations (string)
st_int general purpose integer (int)
t_block pointer to a block for declarations of compound statement, function, or

st afunction prototype
t_next next state toward top of stack
stprev previous state toward bottom of stack

J,

d ,

0' The private state stack is a device that allows the Documentation Language compiler

to transmit and receive signals to itself that indicate context-sensitive structures or
-. other special conditions that require handling. The stack is constructed as a doubly-

linked list, where each element has the ability to temporarily hold general-purpose
S".information which may be relevant to the compiler when processing the signal or

combination of signals.

E-15

Compiler Data Structures

Example of private state stack

SGJNC -

- " I /_ - .-

-P

SG IDCOR

-- a

"alpha" nea t sthblock p

bendclrdt beafucin rfucin.rtoye Teto fthsdiga

SGSTUCT r

-q et st block 0>

0/4

This example indicates that the parser is currently inside an aggregate. The """
identifier name "alpha" has been read by the parser. The declaration "alpha" has "".

been declared to be a function or function prototype. The top of this diagram ,

corresponds to the top of stack, which can be accessed by the function p-tosO. The '

bottom of this diagram corresponds to the bottom of stack, which can be accessed by
the by the function p bosO. ';. '

E-1

E-16 S.

,-:

q%_,-.-,,q% ,---,-0,. , ,...' . :.:.* .., .' , .. .< ,.. a ',--* .* ,::.' ." , *' .,; ,a ;;a ; ! " "* "-r:

Appendix E

Declarator Tree Structure Elements - Tree

The declarator Tree is a device that allows the Documentation Language compiler
to temporarily store the elements of a declarator in the exact order they were

.~ ~:parsed. This form can be manipulated to enforce the precedence of parenthesis,
arrays, functions, and pointers, or scanned when the compiler needs to make a
decision based on declarator tree elements, such as if the declarator was named or
abstract.

tr..ty tr-init W lt
TKRDCOR tr-star Ls

tr-dccl

Tree

Declaration Variant

trjy Tree Type (is TRJ)COR)
tr:-dcl Declaration Expression Tree
tr-init Optional Initializer
tr -star Optional List of Pointer Types

atrjy tr-ident

Identifier Variant

tr-ty Tree Type (is TR.IDENT)
br-ident Identifier namne (string)

W'.

E- 17

Compiler Data Structures

tr ty-"

tr_arexp "'.

Array Variant

tr-ty Tree Type (is TR_-ARRAY)
tr dims List of array dimensions
tr-arexp Array Expression Tree

tr-ty

TRPAREN

trparen

Tree

Parenthesized Expression Variant

trjty Tree Type (is TRPAREN)
tr paren Parenthesized Expression

trrty tr-block Block

TR_FUNCT trformal List

trfnexp '-

Function Variant

trjy Tree Type (is TRFUNCT)
tr~block Prototype Block for this function expression

'_formal List of parameter declarator
trzfnexp Function Expression Tree

E-18

Suggestions for Further Reading

Appendix F

Suggestions for Further Reading

Aho, A. V., and Corasick, M. J., Efficient String Matching: An Aid to
Bibliographic Search, Communications of the ACM, vol. 18, 333-340, 1975.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithmris,
Addison-Wesley, 1983.

Aho, A. V., and Ullman, J. D., Principles of Compiler Design, Addison-Wesley,
1977.

Barrett, W. A., and Couch, J. D., Compiler Construction: Theory and Practice,
Science Research Associates, 1979.

-,4Berg, H. K., Boebert, W. E., Franta, W. R., and Moher, T. 6., Formal Methods ot
Program Verification and Specification, Prentice-Hall, NJ., 1982.

Biggs, C. L., Birks, E. G., and Atkins, W., Managing the Systems Development
Process, Prentice-Hall, NJ., 1980.

Birrell, N. D., and Ould, M. A., A Practical Handbook for Software Development,
Cambridge University Press, 1985.

S-Boar, B. H., Application Prototyping, John Wiley & Sons, 1984.

DeMarco, T., Controlling Software Projects, Yourdon Press, NY., 1982.

Freedman, D. P., and Weinberg, G. M., Handbook of Walkthroughs. Inspections,
and Technical Reviews, Little, Brown, and Company, 1982.

* Feuer, A. R., The C Puzzle Book, Prentice-Hall, NJ., 1982.

Grogono, P., Programming in Pascal, Addison-Wesley, 1980.

Hansen, K., Data Structured Program Design, Ken Orr and Associates, 1983.

F-I

. - - %- ."s -
2

h-. ..- -. .- - • - -- . • . . .

Appendix F

Hunter, R., The Design and Constructi n of Compilers, John Wiley & Sons, 1991,

Jensen, K., and Wirth, N., Pascal User Manual and ReMrt, Springer-Verlag, 1974.

Johnson, S. C., Yacc: Yet Another Compiler Compiler, Computing Science

Technical Report No. 32, Murray Hill, NJ., 1975.

Jones, C. B., Software Development, Prentice-Hall International, London, 1980.

Kernighan, B. W., Ratfor: A Preprocessor for a Rational Fortian, Software
Practice and E1xpericiie, 1975.

Kemighan, B. W., an(l Ritchie, D. M., The C Programming Language, Prentice-
Hall, NJ., 1978.

Lesk, M. E., The Portable C Library, Computing Science Technical Report, Report
No. 31, Murray Hill, NJ. " -

Martin, J., Application Development Without Programmers, Prentice-Hall, NJ.
1987.

Martin, J. Fourth-Generation Languages, Volumes 1 - 3, Prentice-Hall, NJ., 1985.

Martin, J. Recommended Diagramming Standards for Analysts & Programmers,
Prentice-Hall, NJ., 1987.

Martin, J., and McClure, C., Action Diagrams: Clearly Structured Program

Design, Prentice-Hall, NJ., 1985.

Martin, J., and McClure, C., Structured Techniques for Computing, Prentice-ltall,
NJ., 1985.

Purdum, J. J., Leslie, T. C., Stegemoller, A. L., C Programmer's Library, Que
Corporation, 1 984.

Schreiner, A. T., and Friedman, H. G. Jr.. intrlduction to Compiler Construction
with Unix, Prentice-llall, NJ., 1985.

Swann, G. H., Top- Down Structured Design Techniques, Petrocelli Books, 1978.

F-2 •

. . ..

.

Suggestions for Further Reading
4

=
..

Tausworthe, R. C., Standardized Development of Computer Science Software,
. Parts 1 and 2, Prentice-Hall, NJ., 1977.

Ulmman, J. D., Principles of Database Systems, Computer Science Press, MD.,
1982.

Ada Joint Program Office, Reference Manual for the Ada Programming Language,
United States Department of Defense, 1983.

Vick, C. R., and Ramamoorthy, C. V., Handbook of Software Engineering, Van
Nostrand Reinhold Company, NY., 1984.
Warnier, J., Logical Construction of Systems, Van Nostrand Reinhold Company,

• * NY., 1981.

Yourdon, E., and Constantine, L. L., Structured Design, Prentice-Hall, NJ., 1979.

Zelkowitz, M. V., Shaw, A. C., and Gannon, J. D., Principles of Software
Engineering and Design, Prentice-Hall, NJ., 1979.

.F-

D F-3

/7?

w w 10 0 -w IV -w

